Metamath Proof Explorer


Theorem measiuns

Description: The measure of the union of a collection of sets, expressed as the sum of a disjoint set. This is used as a lemma for both measiun and meascnbl . (Contributed by Thierry Arnoux, 22-Jan-2017) (Proof shortened by Thierry Arnoux, 7-Feb-2017)

Ref Expression
Hypotheses measiuns.0 _nB
measiuns.1 n=kA=B
measiuns.2 φN=N=1..^I
measiuns.3 φMmeasuresS
measiuns.4 φnNAS
Assertion measiuns φMnNA=*nNMAk1..^nB

Proof

Step Hyp Ref Expression
1 measiuns.0 _nB
2 measiuns.1 n=kA=B
3 measiuns.2 φN=N=1..^I
4 measiuns.3 φMmeasuresS
5 measiuns.4 φnNAS
6 1 2 3 iundisjcnt φnNA=nNAk1..^nB
7 6 fveq2d φMnNA=MnNAk1..^nB
8 measbase MmeasuresSSransigAlgebra
9 4 8 syl φSransigAlgebra
10 9 adantr φnNSransigAlgebra
11 simpll φnNk1..^nφ
12 fzossnn 1..^n
13 simpr φnNN=N=
14 12 13 sseqtrrid φnNN=1..^nN
15 simplr φnNN=1..^InN
16 simpr φnNN=1..^IN=1..^I
17 15 16 eleqtrd φnNN=1..^In1..^I
18 elfzouz2 n1..^IIn
19 fzoss2 In1..^n1..^I
20 17 18 19 3syl φnNN=1..^I1..^n1..^I
21 20 16 sseqtrrd φnNN=1..^I1..^nN
22 3 adantr φnNN=N=1..^I
23 14 21 22 mpjaodan φnN1..^nN
24 23 sselda φnNk1..^nkN
25 5 sbimi knφnNknAS
26 sban knφnNknφknnN
27 sbv knφφ
28 clelsb1 knnNkN
29 27 28 anbi12i knφknnNφkN
30 26 29 bitri knφnNφkN
31 sbsbc knAS[˙k/n]˙AS
32 sbcel1g kV[˙k/n]˙ASk/nAS
33 32 elv [˙k/n]˙ASk/nAS
34 nfcv _kA
35 34 1 2 cbvcsbw k/nA=k/kB
36 csbid k/kB=B
37 35 36 eqtri k/nA=B
38 37 eleq1i k/nASBS
39 31 33 38 3bitri knASBS
40 25 30 39 3imtr3i φkNBS
41 11 24 40 syl2anc φnNk1..^nBS
42 41 ralrimiva φnNk1..^nBS
43 sigaclfu2 SransigAlgebrak1..^nBSk1..^nBS
44 10 42 43 syl2anc φnNk1..^nBS
45 difelsiga SransigAlgebraASk1..^nBSAk1..^nBS
46 10 5 44 45 syl3anc φnNAk1..^nBS
47 46 ralrimiva φnNAk1..^nBS
48 eqimss N=N
49 fzossnn 1..^I
50 sseq1 N=1..^IN1..^I
51 49 50 mpbiri N=1..^IN
52 48 51 jaoi N=N=1..^IN
53 3 52 syl φN
54 nnct ω
55 ssct NωNω
56 53 54 55 sylancl φNω
57 1 2 3 iundisj2cnt φDisjnNAk1..^nB
58 measvuni MmeasuresSnNAk1..^nBSNωDisjnNAk1..^nBMnNAk1..^nB=*nNMAk1..^nB
59 4 47 56 57 58 syl112anc φMnNAk1..^nB=*nNMAk1..^nB
60 7 59 eqtrd φMnNA=*nNMAk1..^nB