Description: The measure of the union of a collection of sets, expressed as the sum of a disjoint set. This is used as a lemma for both measiun and meascnbl . (Contributed by Thierry Arnoux, 22-Jan-2017) (Proof shortened by Thierry Arnoux, 7-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | measiuns.0 | |
|
measiuns.1 | |
||
measiuns.2 | |
||
measiuns.3 | |
||
measiuns.4 | |
||
Assertion | measiuns | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | measiuns.0 | |
|
2 | measiuns.1 | |
|
3 | measiuns.2 | |
|
4 | measiuns.3 | |
|
5 | measiuns.4 | |
|
6 | 1 2 3 | iundisjcnt | |
7 | 6 | fveq2d | |
8 | measbase | |
|
9 | 4 8 | syl | |
10 | 9 | adantr | |
11 | simpll | |
|
12 | fzossnn | |
|
13 | simpr | |
|
14 | 12 13 | sseqtrrid | |
15 | simplr | |
|
16 | simpr | |
|
17 | 15 16 | eleqtrd | |
18 | elfzouz2 | |
|
19 | fzoss2 | |
|
20 | 17 18 19 | 3syl | |
21 | 20 16 | sseqtrrd | |
22 | 3 | adantr | |
23 | 14 21 22 | mpjaodan | |
24 | 23 | sselda | |
25 | 5 | sbimi | |
26 | sban | |
|
27 | sbv | |
|
28 | clelsb1 | |
|
29 | 27 28 | anbi12i | |
30 | 26 29 | bitri | |
31 | sbsbc | |
|
32 | sbcel1g | |
|
33 | 32 | elv | |
34 | nfcv | |
|
35 | 34 1 2 | cbvcsbw | |
36 | csbid | |
|
37 | 35 36 | eqtri | |
38 | 37 | eleq1i | |
39 | 31 33 38 | 3bitri | |
40 | 25 30 39 | 3imtr3i | |
41 | 11 24 40 | syl2anc | |
42 | 41 | ralrimiva | |
43 | sigaclfu2 | |
|
44 | 10 42 43 | syl2anc | |
45 | difelsiga | |
|
46 | 10 5 44 45 | syl3anc | |
47 | 46 | ralrimiva | |
48 | eqimss | |
|
49 | fzossnn | |
|
50 | sseq1 | |
|
51 | 49 50 | mpbiri | |
52 | 48 51 | jaoi | |
53 | 3 52 | syl | |
54 | nnct | |
|
55 | ssct | |
|
56 | 53 54 55 | sylancl | |
57 | 1 2 3 | iundisj2cnt | |
58 | measvuni | |
|
59 | 4 47 56 57 58 | syl112anc | |
60 | 7 59 | eqtrd | |