Metamath Proof Explorer


Theorem mhpind

Description: The homogeneous polynomials of degree N are generated by the terms of degree N and addition. (Contributed by SN, 28-Jul-2024)

Ref Expression
Hypotheses mhpind.h H = I mHomP R
mhpind.b B = Base R
mhpind.z 0 ˙ = 0 R
mhpind.p P = I mPoly R
mhpind.a + ˙ = + P
mhpind.d D = h 0 I | h -1 Fin
mhpind.s S = g D | fld 𝑠 0 g = N
mhpind.r φ R Grp
mhpind.x φ X H N
mhpind.0 φ D × 0 ˙ G
mhpind.1 φ a S b B s D if s = a b 0 ˙ G
mhpind.2 φ x H N G y H N G x + ˙ y G
Assertion mhpind φ X G

Proof

Step Hyp Ref Expression
1 mhpind.h H = I mHomP R
2 mhpind.b B = Base R
3 mhpind.z 0 ˙ = 0 R
4 mhpind.p P = I mPoly R
5 mhpind.a + ˙ = + P
6 mhpind.d D = h 0 I | h -1 Fin
7 mhpind.s S = g D | fld 𝑠 0 g = N
8 mhpind.r φ R Grp
9 mhpind.x φ X H N
10 mhpind.0 φ D × 0 ˙ G
11 mhpind.1 φ a S b B s D if s = a b 0 ˙ G
12 mhpind.2 φ x H N G y H N G x + ˙ y G
13 eqid + R = + R
14 ovexd φ 0 I V
15 6 14 rabexd φ D V
16 ssrab2 g D | fld 𝑠 0 g = N D
17 16 a1i φ g D | fld 𝑠 0 g = N D
18 reldmmhp Rel dom mHomP
19 18 1 9 elfvov1 φ I V
20 1 9 mhprcl φ N 0
21 1 3 6 19 8 20 mhp0cl φ D × 0 ˙ H N
22 21 10 elind φ D × 0 ˙ H N G
23 7 eleq2i a S a g D | fld 𝑠 0 g = N
24 23 biimpri a g D | fld 𝑠 0 g = N a S
25 eqid Base P = Base P
26 19 adantr φ a S b B I V
27 8 adantr φ a S b B R Grp
28 20 adantr φ a S b B N 0
29 simplrr φ a S b B s D b B
30 2 3 grpidcl R Grp 0 ˙ B
31 8 30 syl φ 0 ˙ B
32 31 ad2antrr φ a S b B s D 0 ˙ B
33 29 32 ifcld φ a S b B s D if s = a b 0 ˙ B
34 33 fmpttd φ a S b B s D if s = a b 0 ˙ : D B
35 2 fvexi B V
36 35 a1i φ B V
37 36 15 elmapd φ s D if s = a b 0 ˙ B D s D if s = a b 0 ˙ : D B
38 37 adantr φ a S b B s D if s = a b 0 ˙ B D s D if s = a b 0 ˙ : D B
39 34 38 mpbird φ a S b B s D if s = a b 0 ˙ B D
40 eqid I mPwSer R = I mPwSer R
41 eqid Base I mPwSer R = Base I mPwSer R
42 40 2 6 41 19 psrbas φ Base I mPwSer R = B D
43 42 adantr φ a S b B Base I mPwSer R = B D
44 39 43 eleqtrrd φ a S b B s D if s = a b 0 ˙ Base I mPwSer R
45 3 fvexi 0 ˙ V
46 45 a1i φ 0 ˙ V
47 eqid s D if s = a b 0 ˙ = s D if s = a b 0 ˙
48 15 46 47 sniffsupp φ finSupp 0 ˙ s D if s = a b 0 ˙
49 48 adantr φ a S b B finSupp 0 ˙ s D if s = a b 0 ˙
50 4 40 41 3 25 mplelbas s D if s = a b 0 ˙ Base P s D if s = a b 0 ˙ Base I mPwSer R finSupp 0 ˙ s D if s = a b 0 ˙
51 44 49 50 sylanbrc φ a S b B s D if s = a b 0 ˙ Base P
52 elneeldif a S s D S a s
53 52 necomd a S s D S s a
54 53 adantll φ a S s D S s a
55 54 adantlrr φ a S b B s D S s a
56 55 neneqd φ a S b B s D S ¬ s = a
57 56 iffalsed φ a S b B s D S if s = a b 0 ˙ = 0 ˙
58 15 adantr φ a S b B D V
59 57 58 suppss2 φ a S b B s D if s = a b 0 ˙ supp 0 ˙ S
60 59 7 sseqtrdi φ a S b B s D if s = a b 0 ˙ supp 0 ˙ g D | fld 𝑠 0 g = N
61 1 4 25 3 6 26 27 28 51 60 ismhp2 φ a S b B s D if s = a b 0 ˙ H N
62 61 11 elind φ a S b B s D if s = a b 0 ˙ H N G
63 24 62 sylanr1 φ a g D | fld 𝑠 0 g = N b B s D if s = a b 0 ˙ H N G
64 elinel1 x H N G x H N
65 64 ad2antrl φ x H N G y H N G x H N
66 1 4 25 65 mhpmpl φ x H N G y H N G x Base P
67 elinel1 y H N G y H N
68 67 ad2antll φ x H N G y H N G y H N
69 1 4 25 68 mhpmpl φ x H N G y H N G y Base P
70 4 25 13 5 66 69 mpladd φ x H N G y H N G x + ˙ y = x + R f y
71 8 adantr φ x H N G y H N G R Grp
72 1 4 5 71 65 68 mhpaddcl φ x H N G y H N G x + ˙ y H N
73 72 12 elind φ x H N G y H N G x + ˙ y H N G
74 70 73 eqeltrrd φ x H N G y H N G x + R f y H N G
75 1 4 25 9 mhpmpl φ X Base P
76 4 2 25 6 75 mplelf φ X : D B
77 4 25 3 75 8 mplelsfi φ finSupp 0 ˙ X
78 1 3 6 9 mhpdeg φ X supp 0 ˙ g D | fld 𝑠 0 g = N
79 2 3 13 8 15 17 22 63 74 76 77 78 fsuppssind φ X H N G
80 79 elin2d φ X G