Step |
Hyp |
Ref |
Expression |
1 |
|
mhpind.h |
|
2 |
|
mhpind.b |
|
3 |
|
mhpind.z |
|
4 |
|
mhpind.p |
|
5 |
|
mhpind.a |
|
6 |
|
mhpind.d |
|
7 |
|
mhpind.s |
|
8 |
|
mhpind.i |
|
9 |
|
mhpind.r |
|
10 |
|
mhpind.n |
|
11 |
|
mhpind.x |
|
12 |
|
mhpind.0 |
|
13 |
|
mhpind.1 |
|
14 |
|
mhpind.2 |
|
15 |
|
eqid |
|
16 |
|
ovexd |
|
17 |
6 16
|
rabexd |
|
18 |
|
ssrab2 |
|
19 |
18
|
a1i |
|
20 |
1 3 6 8 9 10
|
mhp0cl |
|
21 |
20 12
|
elind |
|
22 |
7
|
eleq2i |
|
23 |
22
|
biimpri |
|
24 |
|
eqid |
|
25 |
8
|
adantr |
|
26 |
9
|
adantr |
|
27 |
10
|
adantr |
|
28 |
|
simplrr |
|
29 |
2 3
|
grpidcl |
|
30 |
9 29
|
syl |
|
31 |
30
|
ad2antrr |
|
32 |
28 31
|
ifcld |
|
33 |
32
|
fmpttd |
|
34 |
2
|
fvexi |
|
35 |
34
|
a1i |
|
36 |
35 17
|
elmapd |
|
37 |
36
|
adantr |
|
38 |
33 37
|
mpbird |
|
39 |
|
eqid |
|
40 |
|
eqid |
|
41 |
39 2 6 40 8
|
psrbas |
|
42 |
41
|
adantr |
|
43 |
38 42
|
eleqtrrd |
|
44 |
3
|
fvexi |
|
45 |
44
|
a1i |
|
46 |
|
eqid |
|
47 |
17 45 46
|
sniffsupp |
|
48 |
47
|
adantr |
|
49 |
4 39 40 3 24
|
mplelbas |
|
50 |
43 48 49
|
sylanbrc |
|
51 |
|
elneeldif |
|
52 |
51
|
necomd |
|
53 |
52
|
adantll |
|
54 |
53
|
adantlrr |
|
55 |
54
|
neneqd |
|
56 |
55
|
iffalsed |
|
57 |
17
|
adantr |
|
58 |
56 57
|
suppss2 |
|
59 |
58 7
|
sseqtrdi |
|
60 |
1 4 24 3 6 25 26 27 50 59
|
ismhp2 |
|
61 |
60 13
|
elind |
|
62 |
23 61
|
sylanr1 |
|
63 |
8
|
adantr |
|
64 |
9
|
adantr |
|
65 |
10
|
adantr |
|
66 |
|
elinel1 |
|
67 |
66
|
ad2antrl |
|
68 |
1 4 24 63 64 65 67
|
mhpmpl |
|
69 |
|
elinel1 |
|
70 |
69
|
ad2antll |
|
71 |
1 4 24 63 64 65 70
|
mhpmpl |
|
72 |
4 24 15 5 68 71
|
mpladd |
|
73 |
1 4 5 63 64 65 67 70
|
mhpaddcl |
|
74 |
73 14
|
elind |
|
75 |
72 74
|
eqeltrrd |
|
76 |
1 4 24 8 9 10 11
|
mhpmpl |
|
77 |
4 2 24 6 76
|
mplelf |
|
78 |
4 24 3 76 9
|
mplelsfi |
|
79 |
1 3 6 8 9 10 11
|
mhpdeg |
|
80 |
2 3 15 9 17 19 21 62 75 77 78 79
|
fsuppssind |
|
81 |
80
|
elin2d |
|