Metamath Proof Explorer


Theorem mhpind

Description: The homogeneous polynomials of degree N are generated by the terms of degree N and addition. (Contributed by SN, 28-Jul-2024)

Ref Expression
Hypotheses mhpind.h H=ImHomPR
mhpind.b B=BaseR
mhpind.z 0˙=0R
mhpind.p P=ImPolyR
mhpind.a +˙=+P
mhpind.d D=h0I|h-1Fin
mhpind.s S=gD|fld𝑠0g=N
mhpind.i φIV
mhpind.r φRGrp
mhpind.n φN0
mhpind.x φXHN
mhpind.0 φD×0˙G
mhpind.1 φaSbBsDifs=ab0˙G
mhpind.2 φxHNGyHNGx+˙yG
Assertion mhpind φXG

Proof

Step Hyp Ref Expression
1 mhpind.h H=ImHomPR
2 mhpind.b B=BaseR
3 mhpind.z 0˙=0R
4 mhpind.p P=ImPolyR
5 mhpind.a +˙=+P
6 mhpind.d D=h0I|h-1Fin
7 mhpind.s S=gD|fld𝑠0g=N
8 mhpind.i φIV
9 mhpind.r φRGrp
10 mhpind.n φN0
11 mhpind.x φXHN
12 mhpind.0 φD×0˙G
13 mhpind.1 φaSbBsDifs=ab0˙G
14 mhpind.2 φxHNGyHNGx+˙yG
15 eqid +R=+R
16 ovexd φ0IV
17 6 16 rabexd φDV
18 ssrab2 gD|fld𝑠0g=ND
19 18 a1i φgD|fld𝑠0g=ND
20 1 3 6 8 9 10 mhp0cl φD×0˙HN
21 20 12 elind φD×0˙HNG
22 7 eleq2i aSagD|fld𝑠0g=N
23 22 biimpri agD|fld𝑠0g=NaS
24 eqid BaseP=BaseP
25 8 adantr φaSbBIV
26 9 adantr φaSbBRGrp
27 10 adantr φaSbBN0
28 simplrr φaSbBsDbB
29 2 3 grpidcl RGrp0˙B
30 9 29 syl φ0˙B
31 30 ad2antrr φaSbBsD0˙B
32 28 31 ifcld φaSbBsDifs=ab0˙B
33 32 fmpttd φaSbBsDifs=ab0˙:DB
34 2 fvexi BV
35 34 a1i φBV
36 35 17 elmapd φsDifs=ab0˙BDsDifs=ab0˙:DB
37 36 adantr φaSbBsDifs=ab0˙BDsDifs=ab0˙:DB
38 33 37 mpbird φaSbBsDifs=ab0˙BD
39 eqid ImPwSerR=ImPwSerR
40 eqid BaseImPwSerR=BaseImPwSerR
41 39 2 6 40 8 psrbas φBaseImPwSerR=BD
42 41 adantr φaSbBBaseImPwSerR=BD
43 38 42 eleqtrrd φaSbBsDifs=ab0˙BaseImPwSerR
44 3 fvexi 0˙V
45 44 a1i φ0˙V
46 eqid sDifs=ab0˙=sDifs=ab0˙
47 17 45 46 sniffsupp φfinSupp0˙sDifs=ab0˙
48 47 adantr φaSbBfinSupp0˙sDifs=ab0˙
49 4 39 40 3 24 mplelbas sDifs=ab0˙BasePsDifs=ab0˙BaseImPwSerRfinSupp0˙sDifs=ab0˙
50 43 48 49 sylanbrc φaSbBsDifs=ab0˙BaseP
51 elneeldif aSsDSas
52 51 necomd aSsDSsa
53 52 adantll φaSsDSsa
54 53 adantlrr φaSbBsDSsa
55 54 neneqd φaSbBsDS¬s=a
56 55 iffalsed φaSbBsDSifs=ab0˙=0˙
57 17 adantr φaSbBDV
58 56 57 suppss2 φaSbBsDifs=ab0˙supp0˙S
59 58 7 sseqtrdi φaSbBsDifs=ab0˙supp0˙gD|fld𝑠0g=N
60 1 4 24 3 6 25 26 27 50 59 ismhp2 φaSbBsDifs=ab0˙HN
61 60 13 elind φaSbBsDifs=ab0˙HNG
62 23 61 sylanr1 φagD|fld𝑠0g=NbBsDifs=ab0˙HNG
63 8 adantr φxHNGyHNGIV
64 9 adantr φxHNGyHNGRGrp
65 10 adantr φxHNGyHNGN0
66 elinel1 xHNGxHN
67 66 ad2antrl φxHNGyHNGxHN
68 1 4 24 63 64 65 67 mhpmpl φxHNGyHNGxBaseP
69 elinel1 yHNGyHN
70 69 ad2antll φxHNGyHNGyHN
71 1 4 24 63 64 65 70 mhpmpl φxHNGyHNGyBaseP
72 4 24 15 5 68 71 mpladd φxHNGyHNGx+˙y=x+Rfy
73 1 4 5 63 64 65 67 70 mhpaddcl φxHNGyHNGx+˙yHN
74 73 14 elind φxHNGyHNGx+˙yHNG
75 72 74 eqeltrrd φxHNGyHNGx+RfyHNG
76 1 4 24 8 9 10 11 mhpmpl φXBaseP
77 4 2 24 6 76 mplelf φX:DB
78 4 24 3 76 9 mplelsfi φfinSupp0˙X
79 1 3 6 8 9 10 11 mhpdeg φXsupp0˙gD|fld𝑠0g=N
80 2 3 15 9 17 19 21 62 75 77 78 79 fsuppssind φXHNG
81 80 elin2d φXG