Metamath Proof Explorer


Theorem minvecolem1

Description: Lemma for minveco . The set of all distances from points of Y to A are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses minveco.x X=BaseSetU
minveco.m M=-vU
minveco.n N=normCVU
minveco.y Y=BaseSetW
minveco.u φUCPreHilOLD
minveco.w φWSubSpUCBan
minveco.a φAX
minveco.d D=IndMetU
minveco.j J=MetOpenD
minveco.r R=ranyYNAMy
Assertion minvecolem1 φRRwR0w

Proof

Step Hyp Ref Expression
1 minveco.x X=BaseSetU
2 minveco.m M=-vU
3 minveco.n N=normCVU
4 minveco.y Y=BaseSetW
5 minveco.u φUCPreHilOLD
6 minveco.w φWSubSpUCBan
7 minveco.a φAX
8 minveco.d D=IndMetU
9 minveco.j J=MetOpenD
10 minveco.r R=ranyYNAMy
11 phnv UCPreHilOLDUNrmCVec
12 5 11 syl φUNrmCVec
13 12 adantr φyYUNrmCVec
14 7 adantr φyYAX
15 elin WSubSpUCBanWSubSpUWCBan
16 6 15 sylib φWSubSpUWCBan
17 16 simpld φWSubSpU
18 eqid SubSpU=SubSpU
19 1 4 18 sspba UNrmCVecWSubSpUYX
20 12 17 19 syl2anc φYX
21 20 sselda φyYyX
22 1 2 nvmcl UNrmCVecAXyXAMyX
23 13 14 21 22 syl3anc φyYAMyX
24 1 3 nvcl UNrmCVecAMyXNAMy
25 13 23 24 syl2anc φyYNAMy
26 25 fmpttd φyYNAMy:Y
27 26 frnd φranyYNAMy
28 10 27 eqsstrid φR
29 16 simprd φWCBan
30 bnnv WCBanWNrmCVec
31 eqid 0vecW=0vecW
32 4 31 nvzcl WNrmCVec0vecWY
33 29 30 32 3syl φ0vecWY
34 fvex NAMyV
35 eqid yYNAMy=yYNAMy
36 34 35 dmmpti domyYNAMy=Y
37 33 36 eleqtrrdi φ0vecWdomyYNAMy
38 37 ne0d φdomyYNAMy
39 dm0rn0 domyYNAMy=ranyYNAMy=
40 10 eqeq1i R=ranyYNAMy=
41 39 40 bitr4i domyYNAMy=R=
42 41 necon3bii domyYNAMyR
43 38 42 sylib φR
44 1 3 nvge0 UNrmCVecAMyX0NAMy
45 13 23 44 syl2anc φyY0NAMy
46 45 ralrimiva φyY0NAMy
47 34 rgenw yYNAMyV
48 breq2 w=NAMy0w0NAMy
49 35 48 ralrnmptw yYNAMyVwranyYNAMy0wyY0NAMy
50 47 49 ax-mp wranyYNAMy0wyY0NAMy
51 46 50 sylibr φwranyYNAMy0w
52 10 raleqi wR0wwranyYNAMy0w
53 51 52 sylibr φwR0w
54 28 43 53 3jca φRRwR0w