Metamath Proof Explorer


Theorem mplcoe3

Description: Decompose a monomial in one variable into a power of a variable. (Contributed by Mario Carneiro, 7-Jan-2015) (Proof shortened by AV, 18-Jul-2019)

Ref Expression
Hypotheses mplcoe1.p P=ImPolyR
mplcoe1.d D=f0I|f-1Fin
mplcoe1.z 0˙=0R
mplcoe1.o 1˙=1R
mplcoe1.i φIW
mplcoe2.g G=mulGrpP
mplcoe2.m ×˙=G
mplcoe2.v V=ImVarR
mplcoe3.r φRRing
mplcoe3.x φXI
mplcoe3.n φN0
Assertion mplcoe3 φyDify=kIifk=XN01˙0˙=N×˙VX

Proof

Step Hyp Ref Expression
1 mplcoe1.p P=ImPolyR
2 mplcoe1.d D=f0I|f-1Fin
3 mplcoe1.z 0˙=0R
4 mplcoe1.o 1˙=1R
5 mplcoe1.i φIW
6 mplcoe2.g G=mulGrpP
7 mplcoe2.m ×˙=G
8 mplcoe2.v V=ImVarR
9 mplcoe3.r φRRing
10 mplcoe3.x φXI
11 mplcoe3.n φN0
12 ifeq1 x=0ifk=Xx0=ifk=X00
13 ifid ifk=X00=0
14 12 13 eqtrdi x=0ifk=Xx0=0
15 14 mpteq2dv x=0kIifk=Xx0=kI0
16 fconstmpt I×0=kI0
17 15 16 eqtr4di x=0kIifk=Xx0=I×0
18 17 eqeq2d x=0y=kIifk=Xx0y=I×0
19 18 ifbid x=0ify=kIifk=Xx01˙0˙=ify=I×01˙0˙
20 19 mpteq2dv x=0yDify=kIifk=Xx01˙0˙=yDify=I×01˙0˙
21 oveq1 x=0x×˙VX=0×˙VX
22 20 21 eqeq12d x=0yDify=kIifk=Xx01˙0˙=x×˙VXyDify=I×01˙0˙=0×˙VX
23 22 imbi2d x=0φyDify=kIifk=Xx01˙0˙=x×˙VXφyDify=I×01˙0˙=0×˙VX
24 ifeq1 x=nifk=Xx0=ifk=Xn0
25 24 mpteq2dv x=nkIifk=Xx0=kIifk=Xn0
26 25 eqeq2d x=ny=kIifk=Xx0y=kIifk=Xn0
27 26 ifbid x=nify=kIifk=Xx01˙0˙=ify=kIifk=Xn01˙0˙
28 27 mpteq2dv x=nyDify=kIifk=Xx01˙0˙=yDify=kIifk=Xn01˙0˙
29 oveq1 x=nx×˙VX=n×˙VX
30 28 29 eqeq12d x=nyDify=kIifk=Xx01˙0˙=x×˙VXyDify=kIifk=Xn01˙0˙=n×˙VX
31 30 imbi2d x=nφyDify=kIifk=Xx01˙0˙=x×˙VXφyDify=kIifk=Xn01˙0˙=n×˙VX
32 ifeq1 x=n+1ifk=Xx0=ifk=Xn+10
33 32 mpteq2dv x=n+1kIifk=Xx0=kIifk=Xn+10
34 33 eqeq2d x=n+1y=kIifk=Xx0y=kIifk=Xn+10
35 34 ifbid x=n+1ify=kIifk=Xx01˙0˙=ify=kIifk=Xn+101˙0˙
36 35 mpteq2dv x=n+1yDify=kIifk=Xx01˙0˙=yDify=kIifk=Xn+101˙0˙
37 oveq1 x=n+1x×˙VX=n+1×˙VX
38 36 37 eqeq12d x=n+1yDify=kIifk=Xx01˙0˙=x×˙VXyDify=kIifk=Xn+101˙0˙=n+1×˙VX
39 38 imbi2d x=n+1φyDify=kIifk=Xx01˙0˙=x×˙VXφyDify=kIifk=Xn+101˙0˙=n+1×˙VX
40 ifeq1 x=Nifk=Xx0=ifk=XN0
41 40 mpteq2dv x=NkIifk=Xx0=kIifk=XN0
42 41 eqeq2d x=Ny=kIifk=Xx0y=kIifk=XN0
43 42 ifbid x=Nify=kIifk=Xx01˙0˙=ify=kIifk=XN01˙0˙
44 43 mpteq2dv x=NyDify=kIifk=Xx01˙0˙=yDify=kIifk=XN01˙0˙
45 oveq1 x=Nx×˙VX=N×˙VX
46 44 45 eqeq12d x=NyDify=kIifk=Xx01˙0˙=x×˙VXyDify=kIifk=XN01˙0˙=N×˙VX
47 46 imbi2d x=NφyDify=kIifk=Xx01˙0˙=x×˙VXφyDify=kIifk=XN01˙0˙=N×˙VX
48 eqid BaseP=BaseP
49 1 8 48 5 9 10 mvrcl φVXBaseP
50 6 48 mgpbas BaseP=BaseG
51 eqid 1P=1P
52 6 51 ringidval 1P=0G
53 50 52 7 mulg0 VXBaseP0×˙VX=1P
54 49 53 syl φ0×˙VX=1P
55 1 2 3 4 51 5 9 mpl1 φ1P=yDify=I×01˙0˙
56 54 55 eqtr2d φyDify=I×01˙0˙=0×˙VX
57 oveq1 yDify=kIifk=Xn01˙0˙=n×˙VXyDify=kIifk=Xn01˙0˙PVX=n×˙VXPVX
58 5 adantr φn0IW
59 9 adantr φn0RRing
60 2 snifpsrbag IWn0kIifk=Xn0D
61 5 60 sylan φn0kIifk=Xn0D
62 eqid P=P
63 1nn0 10
64 63 a1i n010
65 2 snifpsrbag IW10kIifk=X10D
66 5 64 65 syl2an φn0kIifk=X10D
67 1 48 3 4 2 58 59 61 62 66 mplmonmul φn0yDify=kIifk=Xn01˙0˙PyDify=kIifk=X101˙0˙=yDify=kIifk=Xn0+fkIifk=X101˙0˙
68 10 adantr φn0XI
69 8 2 3 4 58 59 68 mvrval φn0VX=yDify=kIifk=X101˙0˙
70 69 eqcomd φn0yDify=kIifk=X101˙0˙=VX
71 70 oveq2d φn0yDify=kIifk=Xn01˙0˙PyDify=kIifk=X101˙0˙=yDify=kIifk=Xn01˙0˙PVX
72 simplr φn0kIn0
73 0nn0 00
74 ifcl n000ifk=Xn00
75 72 73 74 sylancl φn0kIifk=Xn00
76 63 73 ifcli ifk=X100
77 76 a1i φn0kIifk=X100
78 eqidd φn0kIifk=Xn0=kIifk=Xn0
79 eqidd φn0kIifk=X10=kIifk=X10
80 58 75 77 78 79 offval2 φn0kIifk=Xn0+fkIifk=X10=kIifk=Xn0+ifk=X10
81 iftrue k=Xifk=Xn0=n
82 iftrue k=Xifk=X10=1
83 81 82 oveq12d k=Xifk=Xn0+ifk=X10=n+1
84 iftrue k=Xifk=Xn+10=n+1
85 83 84 eqtr4d k=Xifk=Xn0+ifk=X10=ifk=Xn+10
86 00id 0+0=0
87 iffalse ¬k=Xifk=Xn0=0
88 iffalse ¬k=Xifk=X10=0
89 87 88 oveq12d ¬k=Xifk=Xn0+ifk=X10=0+0
90 iffalse ¬k=Xifk=Xn+10=0
91 86 89 90 3eqtr4a ¬k=Xifk=Xn0+ifk=X10=ifk=Xn+10
92 85 91 pm2.61i ifk=Xn0+ifk=X10=ifk=Xn+10
93 92 mpteq2i kIifk=Xn0+ifk=X10=kIifk=Xn+10
94 80 93 eqtrdi φn0kIifk=Xn0+fkIifk=X10=kIifk=Xn+10
95 94 eqeq2d φn0y=kIifk=Xn0+fkIifk=X10y=kIifk=Xn+10
96 95 ifbid φn0ify=kIifk=Xn0+fkIifk=X101˙0˙=ify=kIifk=Xn+101˙0˙
97 96 mpteq2dv φn0yDify=kIifk=Xn0+fkIifk=X101˙0˙=yDify=kIifk=Xn+101˙0˙
98 67 71 97 3eqtr3rd φn0yDify=kIifk=Xn+101˙0˙=yDify=kIifk=Xn01˙0˙PVX
99 1 mplring IWRRingPRing
100 5 9 99 syl2anc φPRing
101 6 ringmgp PRingGMnd
102 100 101 syl φGMnd
103 102 adantr φn0GMnd
104 simpr φn0n0
105 49 adantr φn0VXBaseP
106 6 62 mgpplusg P=+G
107 50 7 106 mulgnn0p1 GMndn0VXBasePn+1×˙VX=n×˙VXPVX
108 103 104 105 107 syl3anc φn0n+1×˙VX=n×˙VXPVX
109 98 108 eqeq12d φn0yDify=kIifk=Xn+101˙0˙=n+1×˙VXyDify=kIifk=Xn01˙0˙PVX=n×˙VXPVX
110 57 109 imbitrrid φn0yDify=kIifk=Xn01˙0˙=n×˙VXyDify=kIifk=Xn+101˙0˙=n+1×˙VX
111 110 expcom n0φyDify=kIifk=Xn01˙0˙=n×˙VXyDify=kIifk=Xn+101˙0˙=n+1×˙VX
112 111 a2d n0φyDify=kIifk=Xn01˙0˙=n×˙VXφyDify=kIifk=Xn+101˙0˙=n+1×˙VX
113 23 31 39 47 56 112 nn0ind N0φyDify=kIifk=XN01˙0˙=N×˙VX
114 11 113 mpcom φyDify=kIifk=XN01˙0˙=N×˙VX