Metamath Proof Explorer


Theorem mvth

Description: The Mean Value Theorem. If F is a real continuous function on [ A , B ] which is differentiable on ( A , B ) , then there is some x e. ( A , B ) such that ( RR _D F )x is equal to the average slope over [ A , B ] . This is Metamath 100 proof #75. (Contributed by Mario Carneiro, 1-Sep-2014) (Proof shortened by Mario Carneiro, 29-Dec-2016)

Ref Expression
Hypotheses mvth.a φA
mvth.b φB
mvth.lt φA<B
mvth.f φF:ABcn
mvth.d φdomF=AB
Assertion mvth φxABFx=FBFABA

Proof

Step Hyp Ref Expression
1 mvth.a φA
2 mvth.b φB
3 mvth.lt φA<B
4 mvth.f φF:ABcn
5 mvth.d φdomF=AB
6 mptresid IAB=zABz
7 iccssre ABAB
8 1 2 7 syl2anc φAB
9 ax-resscn
10 cncfmptid ABzABz:ABcn
11 8 9 10 sylancl φzABz:ABcn
12 6 11 eqeltrid φIAB:ABcn
13 6 eqcomi zABz=IAB
14 13 oveq2i dzABzdz=DIAB
15 reelprrecn
16 15 a1i φ
17 simpr φzz
18 17 recnd φzz
19 1red φz1
20 16 dvmptid φdzzdz=z1
21 eqid TopOpenfld=TopOpenfld
22 21 tgioo2 topGenran.=TopOpenfld𝑡
23 iccntr ABinttopGenran.AB=AB
24 1 2 23 syl2anc φinttopGenran.AB=AB
25 16 18 19 20 8 22 21 24 dvmptres2 φdzABzdz=zAB1
26 14 25 eqtr3id φDIAB=zAB1
27 26 dmeqd φdomIAB=domzAB1
28 1ex 1V
29 eqid zAB1=zAB1
30 28 29 dmmpti domzAB1=AB
31 27 30 eqtrdi φdomIAB=AB
32 1 2 3 4 12 5 31 cmvth φxABFBFAIABx=IABBIABAFx
33 1 rexrd φA*
34 2 rexrd φB*
35 1 2 3 ltled φAB
36 ubicc2 A*B*ABBAB
37 33 34 35 36 syl3anc φBAB
38 fvresi BABIABB=B
39 37 38 syl φIABB=B
40 lbicc2 A*B*ABAAB
41 33 34 35 40 syl3anc φAAB
42 fvresi AABIABA=A
43 41 42 syl φIABA=A
44 39 43 oveq12d φIABBIABA=BA
45 44 adantr φxABIABBIABA=BA
46 45 oveq1d φxABIABBIABAFx=BAFx
47 26 fveq1d φIABx=zAB1x
48 eqidd z=x1=1
49 48 29 28 fvmpt3i xABzAB1x=1
50 47 49 sylan9eq φxABIABx=1
51 50 oveq2d φxABFBFAIABx=FBFA1
52 cncff F:ABcnF:AB
53 4 52 syl φF:AB
54 53 37 ffvelcdmd φFB
55 53 41 ffvelcdmd φFA
56 54 55 resubcld φFBFA
57 56 recnd φFBFA
58 57 adantr φxABFBFA
59 58 mulridd φxABFBFA1=FBFA
60 51 59 eqtrd φxABFBFAIABx=FBFA
61 46 60 eqeq12d φxABIABBIABAFx=FBFAIABxBAFx=FBFA
62 2 1 resubcld φBA
63 62 recnd φBA
64 63 adantr φxABBA
65 dvf F:domF
66 5 feq2d φF:domFF:AB
67 65 66 mpbii φF:AB
68 67 ffvelcdmda φxABFx
69 1 2 posdifd φA<B0<BA
70 3 69 mpbid φ0<BA
71 70 gt0ne0d φBA0
72 71 adantr φxABBA0
73 58 64 68 72 divmuld φxABFBFABA=FxBAFx=FBFA
74 61 73 bitr4d φxABIABBIABAFx=FBFAIABxFBFABA=Fx
75 eqcom FBFAIABx=IABBIABAFxIABBIABAFx=FBFAIABx
76 eqcom Fx=FBFABAFBFABA=Fx
77 74 75 76 3bitr4g φxABFBFAIABx=IABBIABAFxFx=FBFABA
78 77 rexbidva φxABFBFAIABx=IABBIABAFxxABFx=FBFABA
79 32 78 mpbid φxABFx=FBFABA