| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmofval.1 |
|
| 2 |
|
nmoi.2 |
|
| 3 |
|
nmoi.3 |
|
| 4 |
|
nmoi.4 |
|
| 5 |
|
nmoi2.z |
|
| 6 |
|
nmoleub.1 |
|
| 7 |
|
nmoleub.2 |
|
| 8 |
|
nmoleub.3 |
|
| 9 |
|
nmoleub.4 |
|
| 10 |
|
nmoleub.5 |
|
| 11 |
7
|
ad2antrr |
|
| 12 |
|
eqid |
|
| 13 |
2 12
|
ghmf |
|
| 14 |
8 13
|
syl |
|
| 15 |
14
|
ad2antrr |
|
| 16 |
|
simprl |
|
| 17 |
|
ffvelcdm |
|
| 18 |
15 16 17
|
syl2anc |
|
| 19 |
12 4
|
nmcl |
|
| 20 |
11 18 19
|
syl2anc |
|
| 21 |
6
|
adantr |
|
| 22 |
2 3 5
|
nmrpcl |
|
| 23 |
22
|
3expb |
|
| 24 |
21 23
|
sylan |
|
| 25 |
20 24
|
rerpdivcld |
|
| 26 |
25
|
rexrd |
|
| 27 |
1
|
nmocl |
|
| 28 |
6 7 8 27
|
syl3anc |
|
| 29 |
28
|
ad2antrr |
|
| 30 |
9
|
ad2antrr |
|
| 31 |
6 7 8
|
3jca |
|
| 32 |
31
|
adantr |
|
| 33 |
1 2 3 4 5
|
nmoi2 |
|
| 34 |
32 33
|
sylan |
|
| 35 |
|
simplr |
|
| 36 |
26 29 30 34 35
|
xrletrd |
|
| 37 |
36
|
expr |
|
| 38 |
37
|
ralrimiva |
|
| 39 |
|
0le0 |
|
| 40 |
|
simpllr |
|
| 41 |
40
|
recnd |
|
| 42 |
41
|
mul01d |
|
| 43 |
39 42
|
breqtrrid |
|
| 44 |
|
fveq2 |
|
| 45 |
8
|
ad2antrr |
|
| 46 |
|
eqid |
|
| 47 |
5 46
|
ghmid |
|
| 48 |
45 47
|
syl |
|
| 49 |
44 48
|
sylan9eqr |
|
| 50 |
49
|
fveq2d |
|
| 51 |
7
|
ad3antrrr |
|
| 52 |
4 46
|
nm0 |
|
| 53 |
51 52
|
syl |
|
| 54 |
50 53
|
eqtrd |
|
| 55 |
|
fveq2 |
|
| 56 |
6
|
ad2antrr |
|
| 57 |
3 5
|
nm0 |
|
| 58 |
56 57
|
syl |
|
| 59 |
55 58
|
sylan9eqr |
|
| 60 |
59
|
oveq2d |
|
| 61 |
43 54 60
|
3brtr4d |
|
| 62 |
61
|
a1d |
|
| 63 |
|
simpr |
|
| 64 |
7
|
ad2antrr |
|
| 65 |
14
|
adantr |
|
| 66 |
65 17
|
sylan |
|
| 67 |
64 66 19
|
syl2anc |
|
| 68 |
67
|
adantr |
|
| 69 |
|
simpllr |
|
| 70 |
6
|
adantr |
|
| 71 |
22
|
3expa |
|
| 72 |
70 71
|
sylanl1 |
|
| 73 |
68 69 72
|
ledivmul2d |
|
| 74 |
73
|
biimpd |
|
| 75 |
63 74
|
embantd |
|
| 76 |
62 75
|
pm2.61dane |
|
| 77 |
76
|
ralimdva |
|
| 78 |
7
|
adantr |
|
| 79 |
8
|
adantr |
|
| 80 |
|
simpr |
|
| 81 |
10
|
adantr |
|
| 82 |
1 2 3 4
|
nmolb |
|
| 83 |
70 78 79 80 81 82
|
syl311anc |
|
| 84 |
77 83
|
syld |
|
| 85 |
84
|
imp |
|
| 86 |
85
|
an32s |
|
| 87 |
28
|
ad2antrr |
|
| 88 |
|
pnfge |
|
| 89 |
87 88
|
syl |
|
| 90 |
|
simpr |
|
| 91 |
89 90
|
breqtrrd |
|
| 92 |
|
ge0nemnf |
|
| 93 |
9 10 92
|
syl2anc |
|
| 94 |
9 93
|
jca |
|
| 95 |
|
xrnemnf |
|
| 96 |
94 95
|
sylib |
|
| 97 |
96
|
adantr |
|
| 98 |
86 91 97
|
mpjaodan |
|
| 99 |
38 98
|
impbida |
|