Metamath Proof Explorer


Theorem nmoleub

Description: The operator norm, defined as an infimum of upper bounds, can also be defined as a supremum of norms of F ( x ) away from zero. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypotheses nmofval.1 N=SnormOpT
nmoi.2 V=BaseS
nmoi.3 L=normS
nmoi.4 M=normT
nmoi2.z 0˙=0S
nmoleub.1 φSNrmGrp
nmoleub.2 φTNrmGrp
nmoleub.3 φFSGrpHomT
nmoleub.4 φA*
nmoleub.5 φ0A
Assertion nmoleub φNFAxVx0˙MFxLxA

Proof

Step Hyp Ref Expression
1 nmofval.1 N=SnormOpT
2 nmoi.2 V=BaseS
3 nmoi.3 L=normS
4 nmoi.4 M=normT
5 nmoi2.z 0˙=0S
6 nmoleub.1 φSNrmGrp
7 nmoleub.2 φTNrmGrp
8 nmoleub.3 φFSGrpHomT
9 nmoleub.4 φA*
10 nmoleub.5 φ0A
11 7 ad2antrr φNFAxVx0˙TNrmGrp
12 eqid BaseT=BaseT
13 2 12 ghmf FSGrpHomTF:VBaseT
14 8 13 syl φF:VBaseT
15 14 ad2antrr φNFAxVx0˙F:VBaseT
16 simprl φNFAxVx0˙xV
17 ffvelcdm F:VBaseTxVFxBaseT
18 15 16 17 syl2anc φNFAxVx0˙FxBaseT
19 12 4 nmcl TNrmGrpFxBaseTMFx
20 11 18 19 syl2anc φNFAxVx0˙MFx
21 6 adantr φNFASNrmGrp
22 2 3 5 nmrpcl SNrmGrpxVx0˙Lx+
23 22 3expb SNrmGrpxVx0˙Lx+
24 21 23 sylan φNFAxVx0˙Lx+
25 20 24 rerpdivcld φNFAxVx0˙MFxLx
26 25 rexrd φNFAxVx0˙MFxLx*
27 1 nmocl SNrmGrpTNrmGrpFSGrpHomTNF*
28 6 7 8 27 syl3anc φNF*
29 28 ad2antrr φNFAxVx0˙NF*
30 9 ad2antrr φNFAxVx0˙A*
31 6 7 8 3jca φSNrmGrpTNrmGrpFSGrpHomT
32 31 adantr φNFASNrmGrpTNrmGrpFSGrpHomT
33 1 2 3 4 5 nmoi2 SNrmGrpTNrmGrpFSGrpHomTxVx0˙MFxLxNF
34 32 33 sylan φNFAxVx0˙MFxLxNF
35 simplr φNFAxVx0˙NFA
36 26 29 30 34 35 xrletrd φNFAxVx0˙MFxLxA
37 36 expr φNFAxVx0˙MFxLxA
38 37 ralrimiva φNFAxVx0˙MFxLxA
39 0le0 00
40 simpllr φAxVx=0˙A
41 40 recnd φAxVx=0˙A
42 41 mul01d φAxVx=0˙A0=0
43 39 42 breqtrrid φAxVx=0˙0A0
44 fveq2 x=0˙Fx=F0˙
45 8 ad2antrr φAxVFSGrpHomT
46 eqid 0T=0T
47 5 46 ghmid FSGrpHomTF0˙=0T
48 45 47 syl φAxVF0˙=0T
49 44 48 sylan9eqr φAxVx=0˙Fx=0T
50 49 fveq2d φAxVx=0˙MFx=M0T
51 7 ad3antrrr φAxVx=0˙TNrmGrp
52 4 46 nm0 TNrmGrpM0T=0
53 51 52 syl φAxVx=0˙M0T=0
54 50 53 eqtrd φAxVx=0˙MFx=0
55 fveq2 x=0˙Lx=L0˙
56 6 ad2antrr φAxVSNrmGrp
57 3 5 nm0 SNrmGrpL0˙=0
58 56 57 syl φAxVL0˙=0
59 55 58 sylan9eqr φAxVx=0˙Lx=0
60 59 oveq2d φAxVx=0˙ALx=A0
61 43 54 60 3brtr4d φAxVx=0˙MFxALx
62 61 a1d φAxVx=0˙x0˙MFxLxAMFxALx
63 simpr φAxVx0˙x0˙
64 7 ad2antrr φAxVTNrmGrp
65 14 adantr φAF:VBaseT
66 65 17 sylan φAxVFxBaseT
67 64 66 19 syl2anc φAxVMFx
68 67 adantr φAxVx0˙MFx
69 simpllr φAxVx0˙A
70 6 adantr φASNrmGrp
71 22 3expa SNrmGrpxVx0˙Lx+
72 70 71 sylanl1 φAxVx0˙Lx+
73 68 69 72 ledivmul2d φAxVx0˙MFxLxAMFxALx
74 73 biimpd φAxVx0˙MFxLxAMFxALx
75 63 74 embantd φAxVx0˙x0˙MFxLxAMFxALx
76 62 75 pm2.61dane φAxVx0˙MFxLxAMFxALx
77 76 ralimdva φAxVx0˙MFxLxAxVMFxALx
78 7 adantr φATNrmGrp
79 8 adantr φAFSGrpHomT
80 simpr φAA
81 10 adantr φA0A
82 1 2 3 4 nmolb SNrmGrpTNrmGrpFSGrpHomTA0AxVMFxALxNFA
83 70 78 79 80 81 82 syl311anc φAxVMFxALxNFA
84 77 83 syld φAxVx0˙MFxLxANFA
85 84 imp φAxVx0˙MFxLxANFA
86 85 an32s φxVx0˙MFxLxAANFA
87 28 ad2antrr φxVx0˙MFxLxAA=+∞NF*
88 pnfge NF*NF+∞
89 87 88 syl φxVx0˙MFxLxAA=+∞NF+∞
90 simpr φxVx0˙MFxLxAA=+∞A=+∞
91 89 90 breqtrrd φxVx0˙MFxLxAA=+∞NFA
92 ge0nemnf A*0AA−∞
93 9 10 92 syl2anc φA−∞
94 9 93 jca φA*A−∞
95 xrnemnf A*A−∞AA=+∞
96 94 95 sylib φAA=+∞
97 96 adantr φxVx0˙MFxLxAAA=+∞
98 86 91 97 mpjaodan φxVx0˙MFxLxANFA
99 38 98 impbida φNFAxVx0˙MFxLxA