Metamath Proof Explorer


Theorem noinfres

Description: The restriction of surreal infimum when there is no minimum. (Contributed by Scott Fenton, 8-Aug-2024)

Ref Expression
Hypothesis noinfres.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
Assertion noinfres ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGTsucG=UsucG

Proof

Step Hyp Ref Expression
1 noinfres.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
2 dmres domTsucG=sucGdomT
3 1 noinfno BNoBVTNo
4 3 3ad2ant2 ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGTNo
5 nodmord TNoOrddomT
6 4 5 syl ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGOrddomT
7 simp31 ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGUB
8 simp32 ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGGdomU
9 simp33 ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGvB¬U<svUsucG=vsucG
10 dmeq b=Udomb=domU
11 10 eleq2d b=UGdombGdomU
12 breq1 b=Ub<scU<sc
13 12 notbid b=U¬b<sc¬U<sc
14 reseq1 b=UbsucG=UsucG
15 14 eqeq1d b=UbsucG=csucGUsucG=csucG
16 13 15 imbi12d b=U¬b<scbsucG=csucG¬U<scUsucG=csucG
17 16 ralbidv b=UcB¬b<scbsucG=csucGcB¬U<scUsucG=csucG
18 breq2 c=vU<scU<sv
19 18 notbid c=v¬U<sc¬U<sv
20 reseq1 c=vcsucG=vsucG
21 20 eqeq2d c=vUsucG=csucGUsucG=vsucG
22 19 21 imbi12d c=v¬U<scUsucG=csucG¬U<svUsucG=vsucG
23 22 cbvralvw cB¬U<scUsucG=csucGvB¬U<svUsucG=vsucG
24 17 23 bitrdi b=UcB¬b<scbsucG=csucGvB¬U<svUsucG=vsucG
25 11 24 anbi12d b=UGdombcB¬b<scbsucG=csucGGdomUvB¬U<svUsucG=vsucG
26 25 rspcev UBGdomUvB¬U<svUsucG=vsucGbBGdombcB¬b<scbsucG=csucG
27 7 8 9 26 syl12anc ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGbBGdombcB¬b<scbsucG=csucG
28 eleq1 a=GadombGdomb
29 suceq a=Gsuca=sucG
30 29 reseq2d a=Gbsuca=bsucG
31 29 reseq2d a=Gcsuca=csucG
32 30 31 eqeq12d a=Gbsuca=csucabsucG=csucG
33 32 imbi2d a=G¬b<scbsuca=csuca¬b<scbsucG=csucG
34 33 ralbidv a=GcB¬b<scbsuca=csucacB¬b<scbsucG=csucG
35 28 34 anbi12d a=GadombcB¬b<scbsuca=csucaGdombcB¬b<scbsucG=csucG
36 35 rexbidv a=GbBadombcB¬b<scbsuca=csucabBGdombcB¬b<scbsucG=csucG
37 36 elabg GdomUGa|bBadombcB¬b<scbsuca=csucabBGdombcB¬b<scbsucG=csucG
38 8 37 syl ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGGa|bBadombcB¬b<scbsuca=csucabBGdombcB¬b<scbsucG=csucG
39 27 38 mpbird ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGGa|bBadombcB¬b<scbsuca=csuca
40 1 noinfdm ¬xByB¬y<sxdomT=a|bBadombcB¬b<scbsuca=csuca
41 40 3ad2ant1 ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGdomT=a|bBadombcB¬b<scbsuca=csuca
42 39 41 eleqtrrd ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGGdomT
43 ordsucss OrddomTGdomTsucGdomT
44 6 42 43 sylc ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGsucGdomT
45 df-ss sucGdomTsucGdomT=sucG
46 44 45 sylib ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGsucGdomT=sucG
47 2 46 eqtrid ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGdomTsucG=sucG
48 dmres domUsucG=sucGdomU
49 simp2l ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGBNo
50 49 7 sseldd ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGUNo
51 nodmon UNodomUOn
52 50 51 syl ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGdomUOn
53 eloni domUOnOrddomU
54 52 53 syl ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGOrddomU
55 ordsucss OrddomUGdomUsucGdomU
56 54 8 55 sylc ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGsucGdomU
57 df-ss sucGdomUsucGdomU=sucG
58 56 57 sylib ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGsucGdomU=sucG
59 48 58 eqtrid ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGdomUsucG=sucG
60 47 59 eqtr4d ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGdomTsucG=domUsucG
61 47 eleq2d ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGadomTsucGasucG
62 simpl1 ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGasucG¬xByB¬y<sx
63 simpl2 ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGasucGBNoBV
64 simpl31 ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGasucGUB
65 56 sselda ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGasucGadomU
66 50 adantr ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGasucGUNo
67 66 51 syl ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGasucGdomUOn
68 simpl32 ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGasucGGdomU
69 onelon domUOnGdomUGOn
70 67 68 69 syl2anc ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGasucGGOn
71 onsucb GOnsucGOn
72 70 71 sylib ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGasucGsucGOn
73 eloni sucGOnOrdsucG
74 72 73 syl ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGasucGOrdsucG
75 simpr ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGasucGasucG
76 ordsucss OrdsucGasucGsucasucG
77 74 75 76 sylc ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGasucGsucasucG
78 simpl33 ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGasucGvB¬U<svUsucG=vsucG
79 reseq1 UsucG=vsucGUsucGsuca=vsucGsuca
80 resabs1 sucasucGUsucGsuca=Usuca
81 resabs1 sucasucGvsucGsuca=vsuca
82 80 81 eqeq12d sucasucGUsucGsuca=vsucGsucaUsuca=vsuca
83 79 82 imbitrid sucasucGUsucG=vsucGUsuca=vsuca
84 83 imim2d sucasucG¬U<svUsucG=vsucG¬U<svUsuca=vsuca
85 84 ralimdv sucasucGvB¬U<svUsucG=vsucGvB¬U<svUsuca=vsuca
86 77 78 85 sylc ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGasucGvB¬U<svUsuca=vsuca
87 1 noinffv ¬xByB¬y<sxBNoBVUBadomUvB¬U<svUsuca=vsucaTa=Ua
88 62 63 64 65 86 87 syl113anc ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGasucGTa=Ua
89 75 fvresd ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGasucGTsucGa=Ta
90 75 fvresd ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGasucGUsucGa=Ua
91 88 89 90 3eqtr4d ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGasucGTsucGa=UsucGa
92 91 ex ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGasucGTsucGa=UsucGa
93 61 92 sylbid ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGadomTsucGTsucGa=UsucGa
94 93 ralrimiv ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGadomTsucGTsucGa=UsucGa
95 nofun TNoFunT
96 95 funresd TNoFunTsucG
97 4 96 syl ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGFunTsucG
98 nofun UNoFunU
99 98 funresd UNoFunUsucG
100 50 99 syl ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGFunUsucG
101 eqfunfv FunTsucGFunUsucGTsucG=UsucGdomTsucG=domUsucGadomTsucGTsucGa=UsucGa
102 97 100 101 syl2anc ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGTsucG=UsucGdomTsucG=domUsucGadomTsucGTsucGa=UsucGa
103 60 94 102 mpbir2and ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGTsucG=UsucG