Metamath Proof Explorer


Theorem nosupfv

Description: The value of surreal supremum when there is no maximum. (Contributed by Scott Fenton, 5-Dec-2021)

Ref Expression
Hypothesis nosupfv.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
Assertion nosupfv ¬ x A y A ¬ x < s y A No A V U A G dom U v A ¬ v < s U U suc G = v suc G S G = U G

Proof

Step Hyp Ref Expression
1 nosupfv.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
2 iffalse ¬ x A y A ¬ x < s y if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x = g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
3 1 2 eqtrid ¬ x A y A ¬ x < s y S = g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
4 3 fveq1d ¬ x A y A ¬ x < s y S G = g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x G
5 4 3ad2ant1 ¬ x A y A ¬ x < s y A No A V U A G dom U v A ¬ v < s U U suc G = v suc G S G = g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x G
6 simp32 ¬ x A y A ¬ x < s y A No A V U A G dom U v A ¬ v < s U U suc G = v suc G G dom U
7 dmeq p = U dom p = dom U
8 7 eleq2d p = U G dom p G dom U
9 breq2 p = U v < s p v < s U
10 9 notbid p = U ¬ v < s p ¬ v < s U
11 reseq1 p = U p suc G = U suc G
12 11 eqeq1d p = U p suc G = v suc G U suc G = v suc G
13 10 12 imbi12d p = U ¬ v < s p p suc G = v suc G ¬ v < s U U suc G = v suc G
14 13 ralbidv p = U v A ¬ v < s p p suc G = v suc G v A ¬ v < s U U suc G = v suc G
15 8 14 anbi12d p = U G dom p v A ¬ v < s p p suc G = v suc G G dom U v A ¬ v < s U U suc G = v suc G
16 15 rspcev U A G dom U v A ¬ v < s U U suc G = v suc G p A G dom p v A ¬ v < s p p suc G = v suc G
17 16 3impb U A G dom U v A ¬ v < s U U suc G = v suc G p A G dom p v A ¬ v < s p p suc G = v suc G
18 dmeq u = p dom u = dom p
19 18 eleq2d u = p G dom u G dom p
20 breq2 u = p v < s u v < s p
21 20 notbid u = p ¬ v < s u ¬ v < s p
22 reseq1 u = p u suc G = p suc G
23 22 eqeq1d u = p u suc G = v suc G p suc G = v suc G
24 21 23 imbi12d u = p ¬ v < s u u suc G = v suc G ¬ v < s p p suc G = v suc G
25 24 ralbidv u = p v A ¬ v < s u u suc G = v suc G v A ¬ v < s p p suc G = v suc G
26 19 25 anbi12d u = p G dom u v A ¬ v < s u u suc G = v suc G G dom p v A ¬ v < s p p suc G = v suc G
27 26 cbvrexvw u A G dom u v A ¬ v < s u u suc G = v suc G p A G dom p v A ¬ v < s p p suc G = v suc G
28 17 27 sylibr U A G dom U v A ¬ v < s U U suc G = v suc G u A G dom u v A ¬ v < s u u suc G = v suc G
29 28 3ad2ant3 ¬ x A y A ¬ x < s y A No A V U A G dom U v A ¬ v < s U U suc G = v suc G u A G dom u v A ¬ v < s u u suc G = v suc G
30 eleq1 y = G y dom u G dom u
31 suceq y = G suc y = suc G
32 31 reseq2d y = G u suc y = u suc G
33 31 reseq2d y = G v suc y = v suc G
34 32 33 eqeq12d y = G u suc y = v suc y u suc G = v suc G
35 34 imbi2d y = G ¬ v < s u u suc y = v suc y ¬ v < s u u suc G = v suc G
36 35 ralbidv y = G v A ¬ v < s u u suc y = v suc y v A ¬ v < s u u suc G = v suc G
37 30 36 anbi12d y = G y dom u v A ¬ v < s u u suc y = v suc y G dom u v A ¬ v < s u u suc G = v suc G
38 37 rexbidv y = G u A y dom u v A ¬ v < s u u suc y = v suc y u A G dom u v A ¬ v < s u u suc G = v suc G
39 6 29 38 elabd ¬ x A y A ¬ x < s y A No A V U A G dom U v A ¬ v < s U U suc G = v suc G G y | u A y dom u v A ¬ v < s u u suc y = v suc y
40 eleq1 g = G g dom u G dom u
41 suceq g = G suc g = suc G
42 41 reseq2d g = G u suc g = u suc G
43 41 reseq2d g = G v suc g = v suc G
44 42 43 eqeq12d g = G u suc g = v suc g u suc G = v suc G
45 44 imbi2d g = G ¬ v < s u u suc g = v suc g ¬ v < s u u suc G = v suc G
46 45 ralbidv g = G v A ¬ v < s u u suc g = v suc g v A ¬ v < s u u suc G = v suc G
47 fveqeq2 g = G u g = x u G = x
48 40 46 47 3anbi123d g = G g dom u v A ¬ v < s u u suc g = v suc g u g = x G dom u v A ¬ v < s u u suc G = v suc G u G = x
49 48 rexbidv g = G u A g dom u v A ¬ v < s u u suc g = v suc g u g = x u A G dom u v A ¬ v < s u u suc G = v suc G u G = x
50 49 iotabidv g = G ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x = ι x | u A G dom u v A ¬ v < s u u suc G = v suc G u G = x
51 eqid g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x = g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
52 iotaex ι x | u A G dom u v A ¬ v < s u u suc G = v suc G u G = x V
53 50 51 52 fvmpt G y | u A y dom u v A ¬ v < s u u suc y = v suc y g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x G = ι x | u A G dom u v A ¬ v < s u u suc G = v suc G u G = x
54 39 53 syl ¬ x A y A ¬ x < s y A No A V U A G dom U v A ¬ v < s U U suc G = v suc G g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x G = ι x | u A G dom u v A ¬ v < s u u suc G = v suc G u G = x
55 simp1 U A G dom U v A ¬ v < s U U suc G = v suc G U A
56 simp2 U A G dom U v A ¬ v < s U U suc G = v suc G G dom U
57 simp3 U A G dom U v A ¬ v < s U U suc G = v suc G v A ¬ v < s U U suc G = v suc G
58 eqidd U A G dom U v A ¬ v < s U U suc G = v suc G U G = U G
59 dmeq u = U dom u = dom U
60 59 eleq2d u = U G dom u G dom U
61 breq2 u = U v < s u v < s U
62 61 notbid u = U ¬ v < s u ¬ v < s U
63 reseq1 u = U u suc G = U suc G
64 63 eqeq1d u = U u suc G = v suc G U suc G = v suc G
65 62 64 imbi12d u = U ¬ v < s u u suc G = v suc G ¬ v < s U U suc G = v suc G
66 65 ralbidv u = U v A ¬ v < s u u suc G = v suc G v A ¬ v < s U U suc G = v suc G
67 fveq1 u = U u G = U G
68 67 eqeq1d u = U u G = U G U G = U G
69 60 66 68 3anbi123d u = U G dom u v A ¬ v < s u u suc G = v suc G u G = U G G dom U v A ¬ v < s U U suc G = v suc G U G = U G
70 69 rspcev U A G dom U v A ¬ v < s U U suc G = v suc G U G = U G u A G dom u v A ¬ v < s u u suc G = v suc G u G = U G
71 55 56 57 58 70 syl13anc U A G dom U v A ¬ v < s U U suc G = v suc G u A G dom u v A ¬ v < s u u suc G = v suc G u G = U G
72 71 3ad2ant3 ¬ x A y A ¬ x < s y A No A V U A G dom U v A ¬ v < s U U suc G = v suc G u A G dom u v A ¬ v < s u u suc G = v suc G u G = U G
73 fvex U G V
74 eqid u G = u G
75 fvex u G V
76 eqeq2 x = u G u G = x u G = u G
77 76 3anbi3d x = u G G dom u v A ¬ v < s u u suc G = v suc G u G = x G dom u v A ¬ v < s u u suc G = v suc G u G = u G
78 75 77 spcev G dom u v A ¬ v < s u u suc G = v suc G u G = u G x G dom u v A ¬ v < s u u suc G = v suc G u G = x
79 74 78 mp3an3 G dom u v A ¬ v < s u u suc G = v suc G x G dom u v A ¬ v < s u u suc G = v suc G u G = x
80 79 reximi u A G dom u v A ¬ v < s u u suc G = v suc G u A x G dom u v A ¬ v < s u u suc G = v suc G u G = x
81 rexcom4 u A x G dom u v A ¬ v < s u u suc G = v suc G u G = x x u A G dom u v A ¬ v < s u u suc G = v suc G u G = x
82 80 81 sylib u A G dom u v A ¬ v < s u u suc G = v suc G x u A G dom u v A ¬ v < s u u suc G = v suc G u G = x
83 28 82 syl U A G dom U v A ¬ v < s U U suc G = v suc G x u A G dom u v A ¬ v < s u u suc G = v suc G u G = x
84 83 3ad2ant3 ¬ x A y A ¬ x < s y A No A V U A G dom U v A ¬ v < s U U suc G = v suc G x u A G dom u v A ¬ v < s u u suc G = v suc G u G = x
85 nosupprefixmo A No * x u A G dom u v A ¬ v < s u u suc G = v suc G u G = x
86 85 adantr A No A V * x u A G dom u v A ¬ v < s u u suc G = v suc G u G = x
87 86 3ad2ant2 ¬ x A y A ¬ x < s y A No A V U A G dom U v A ¬ v < s U U suc G = v suc G * x u A G dom u v A ¬ v < s u u suc G = v suc G u G = x
88 df-eu ∃! x u A G dom u v A ¬ v < s u u suc G = v suc G u G = x x u A G dom u v A ¬ v < s u u suc G = v suc G u G = x * x u A G dom u v A ¬ v < s u u suc G = v suc G u G = x
89 84 87 88 sylanbrc ¬ x A y A ¬ x < s y A No A V U A G dom U v A ¬ v < s U U suc G = v suc G ∃! x u A G dom u v A ¬ v < s u u suc G = v suc G u G = x
90 eqeq2 x = U G u G = x u G = U G
91 90 3anbi3d x = U G G dom u v A ¬ v < s u u suc G = v suc G u G = x G dom u v A ¬ v < s u u suc G = v suc G u G = U G
92 91 rexbidv x = U G u A G dom u v A ¬ v < s u u suc G = v suc G u G = x u A G dom u v A ¬ v < s u u suc G = v suc G u G = U G
93 92 iota2 U G V ∃! x u A G dom u v A ¬ v < s u u suc G = v suc G u G = x u A G dom u v A ¬ v < s u u suc G = v suc G u G = U G ι x | u A G dom u v A ¬ v < s u u suc G = v suc G u G = x = U G
94 73 89 93 sylancr ¬ x A y A ¬ x < s y A No A V U A G dom U v A ¬ v < s U U suc G = v suc G u A G dom u v A ¬ v < s u u suc G = v suc G u G = U G ι x | u A G dom u v A ¬ v < s u u suc G = v suc G u G = x = U G
95 72 94 mpbid ¬ x A y A ¬ x < s y A No A V U A G dom U v A ¬ v < s U U suc G = v suc G ι x | u A G dom u v A ¬ v < s u u suc G = v suc G u G = x = U G
96 5 54 95 3eqtrd ¬ x A y A ¬ x < s y A No A V U A G dom U v A ¬ v < s U U suc G = v suc G S G = U G