Metamath Proof Explorer


Theorem ntrclsk13

Description: The interior of the intersection of any pair is equal to the intersection of the interiors if and only if the closure of the unions of any pair is equal to the union of closures. (Contributed by RP, 19-Jun-2021)

Ref Expression
Hypotheses ntrcls.o O=iVk𝒫i𝒫ij𝒫iikij
ntrcls.d D=OB
ntrcls.r φIDK
Assertion ntrclsk13 φs𝒫Bt𝒫BIst=IsIts𝒫Bt𝒫BKst=KsKt

Proof

Step Hyp Ref Expression
1 ntrcls.o O=iVk𝒫i𝒫ij𝒫iikij
2 ntrcls.d D=OB
3 ntrcls.r φIDK
4 ineq1 s=ast=at
5 4 fveq2d s=aIst=Iat
6 fveq2 s=aIs=Ia
7 6 ineq1d s=aIsIt=IaIt
8 5 7 eqeq12d s=aIst=IsItIat=IaIt
9 ineq2 t=bat=ab
10 9 fveq2d t=bIat=Iab
11 fveq2 t=bIt=Ib
12 11 ineq2d t=bIaIt=IaIb
13 10 12 eqeq12d t=bIat=IaItIab=IaIb
14 8 13 cbvral2vw s𝒫Bt𝒫BIst=IsIta𝒫Bb𝒫BIab=IaIb
15 2 3 ntrclsbex φBV
16 difssd φBsB
17 15 16 sselpwd φBs𝒫B
18 17 adantr φs𝒫BBs𝒫B
19 elpwi a𝒫BaB
20 15 adantr φaBBV
21 difssd φaBBaB
22 20 21 sselpwd φaBBa𝒫B
23 difeq2 s=BaBs=BBa
24 23 eqeq2d s=Baa=Bsa=BBa
25 eqcom a=BBaBBa=a
26 24 25 bitrdi s=Baa=BsBBa=a
27 26 adantl φaBs=Baa=BsBBa=a
28 dfss4 aBBBa=a
29 28 biimpi aBBBa=a
30 29 adantl φaBBBa=a
31 22 27 30 rspcedvd φaBs𝒫Ba=Bs
32 19 31 sylan2 φa𝒫Bs𝒫Ba=Bs
33 ineq1 a=Bsab=Bsb
34 33 fveq2d a=BsIab=IBsb
35 fveq2 a=BsIa=IBs
36 35 ineq1d a=BsIaIb=IBsIb
37 34 36 eqeq12d a=BsIab=IaIbIBsb=IBsIb
38 37 ralbidv a=Bsb𝒫BIab=IaIbb𝒫BIBsb=IBsIb
39 38 3ad2ant3 φs𝒫Ba=Bsb𝒫BIab=IaIbb𝒫BIBsb=IBsIb
40 difssd φBtB
41 15 40 sselpwd φBt𝒫B
42 41 ad2antrr φs𝒫Bt𝒫BBt𝒫B
43 simpll φs𝒫Bb𝒫Bφ
44 elpwi b𝒫BbB
45 44 adantl φs𝒫Bb𝒫BbB
46 difssd φBbB
47 15 46 sselpwd φBb𝒫B
48 47 adantr φbBBb𝒫B
49 difeq2 t=BbBt=BBb
50 49 eqeq2d t=Bbb=Btb=BBb
51 eqcom b=BBbBBb=b
52 50 51 bitrdi t=Bbb=BtBBb=b
53 52 adantl φbBt=Bbb=BtBBb=b
54 dfss4 bBBBb=b
55 54 biimpi bBBBb=b
56 55 adantl φbBBBb=b
57 48 53 56 rspcedvd φbBt𝒫Bb=Bt
58 43 45 57 syl2anc φs𝒫Bb𝒫Bt𝒫Bb=Bt
59 ineq2 b=BtBsb=BsBt
60 difundi Bst=BsBt
61 59 60 eqtr4di b=BtBsb=Bst
62 61 fveq2d b=BtIBsb=IBst
63 fveq2 b=BtIb=IBt
64 63 ineq2d b=BtIBsIb=IBsIBt
65 62 64 eqeq12d b=BtIBsb=IBsIbIBst=IBsIBt
66 65 3ad2ant3 φs𝒫Bt𝒫Bb=BtIBsb=IBsIbIBst=IBsIBt
67 simp1l φs𝒫Bt𝒫Bb=Btφ
68 67 15 jccir φs𝒫Bt𝒫Bb=BtφBV
69 simp1r φs𝒫Bt𝒫Bb=Bts𝒫B
70 simp2 φs𝒫Bt𝒫Bb=Btt𝒫B
71 1 2 3 ntrclsiex φI𝒫B𝒫B
72 elmapi I𝒫B𝒫BI:𝒫B𝒫B
73 71 72 syl φI:𝒫B𝒫B
74 73 anim1i φBVI:𝒫B𝒫BBV
75 74 adantr φBVs𝒫Bt𝒫BI:𝒫B𝒫BBV
76 simpl I:𝒫B𝒫BBVI:𝒫B𝒫B
77 simpr I:𝒫B𝒫BBVBV
78 difssd I:𝒫B𝒫BBVBstB
79 77 78 sselpwd I:𝒫B𝒫BBVBst𝒫B
80 76 79 ffvelcdmd I:𝒫B𝒫BBVIBst𝒫B
81 80 elpwid I:𝒫B𝒫BBVIBstB
82 difssd I:𝒫B𝒫BBVBsB
83 77 82 sselpwd I:𝒫B𝒫BBVBs𝒫B
84 76 83 ffvelcdmd I:𝒫B𝒫BBVIBs𝒫B
85 84 elpwid I:𝒫B𝒫BBVIBsB
86 ssinss1 IBsBIBsIBtB
87 85 86 syl I:𝒫B𝒫BBVIBsIBtB
88 81 87 jca I:𝒫B𝒫BBVIBstBIBsIBtB
89 rcompleq IBstBIBsIBtBIBst=IBsIBtBIBst=BIBsIBt
90 75 88 89 3syl φBVs𝒫Bt𝒫BIBst=IBsIBtBIBst=BIBsIBt
91 simplr φBVs𝒫Bt𝒫BBV
92 71 ad2antrr φBVs𝒫Bt𝒫BI𝒫B𝒫B
93 eqid DI=DI
94 simprl φBVs𝒫Bt𝒫Bs𝒫B
95 94 elpwid φBVs𝒫Bt𝒫BsB
96 simprr φBVs𝒫Bt𝒫Bt𝒫B
97 96 elpwid φBVs𝒫Bt𝒫BtB
98 95 97 unssd φBVs𝒫Bt𝒫BstB
99 91 98 sselpwd φBVs𝒫Bt𝒫Bst𝒫B
100 eqid DIst=DIst
101 1 2 91 92 93 99 100 dssmapfv3d φBVs𝒫Bt𝒫BDIst=BIBst
102 simpl s𝒫Bt𝒫Bs𝒫B
103 simplr φBVs𝒫BBV
104 71 ad2antrr φBVs𝒫BI𝒫B𝒫B
105 simpr φBVs𝒫Bs𝒫B
106 eqid DIs=DIs
107 1 2 103 104 93 105 106 dssmapfv3d φBVs𝒫BDIs=BIBs
108 102 107 sylan2 φBVs𝒫Bt𝒫BDIs=BIBs
109 simpr s𝒫Bt𝒫Bt𝒫B
110 simplr φBVt𝒫BBV
111 71 ad2antrr φBVt𝒫BI𝒫B𝒫B
112 simpr φBVt𝒫Bt𝒫B
113 eqid DIt=DIt
114 1 2 110 111 93 112 113 dssmapfv3d φBVt𝒫BDIt=BIBt
115 109 114 sylan2 φBVs𝒫Bt𝒫BDIt=BIBt
116 108 115 uneq12d φBVs𝒫Bt𝒫BDIsDIt=BIBsBIBt
117 difindi BIBsIBt=BIBsBIBt
118 116 117 eqtr4di φBVs𝒫Bt𝒫BDIsDIt=BIBsIBt
119 101 118 eqeq12d φBVs𝒫Bt𝒫BDIst=DIsDItBIBst=BIBsIBt
120 simpll φBVs𝒫Bt𝒫Bφ
121 1 2 3 ntrclsfv1 φDI=K
122 fveq1 DI=KDIst=Kst
123 fveq1 DI=KDIs=Ks
124 fveq1 DI=KDIt=Kt
125 123 124 uneq12d DI=KDIsDIt=KsKt
126 122 125 eqeq12d DI=KDIst=DIsDItKst=KsKt
127 120 121 126 3syl φBVs𝒫Bt𝒫BDIst=DIsDItKst=KsKt
128 90 119 127 3bitr2d φBVs𝒫Bt𝒫BIBst=IBsIBtKst=KsKt
129 68 69 70 128 syl12anc φs𝒫Bt𝒫Bb=BtIBst=IBsIBtKst=KsKt
130 66 129 bitrd φs𝒫Bt𝒫Bb=BtIBsb=IBsIbKst=KsKt
131 42 58 130 ralxfrd2 φs𝒫Bb𝒫BIBsb=IBsIbt𝒫BKst=KsKt
132 131 3adant3 φs𝒫Ba=Bsb𝒫BIBsb=IBsIbt𝒫BKst=KsKt
133 39 132 bitrd φs𝒫Ba=Bsb𝒫BIab=IaIbt𝒫BKst=KsKt
134 18 32 133 ralxfrd2 φa𝒫Bb𝒫BIab=IaIbs𝒫Bt𝒫BKst=KsKt
135 14 134 bitrid φs𝒫Bt𝒫BIst=IsIts𝒫Bt𝒫BKst=KsKt