Metamath Proof Explorer


Theorem nzss

Description: The set of multiples ofm, mℤ, is a subset of those ofn, nℤ, iffn dividesm. Lemma 2.1(a) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5, with mℤ and nℤ as images of the divides relation underm andn. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Hypotheses nzss.m φM
nzss.n φNV
Assertion nzss φMNNM

Proof

Step Hyp Ref Expression
1 nzss.m φM
2 nzss.n φNV
3 iddvds MMM
4 breq2 x=MMxMM
5 4 elabg MMx|MxMM
6 3 5 mpbird MMx|Mx
7 reldvds Rel
8 relimasn RelM=x|Mx
9 7 8 ax-mp M=x|Mx
10 6 9 eleqtrrdi MMM
11 ssel MNMMMN
12 10 11 syl5 MNMMN
13 breq2 x=MNxNM
14 relimasn RelN=x|Nx
15 7 14 ax-mp N=x|Nx
16 13 15 elab2g MMNNM
17 12 16 mpbidi MNMNM
18 17 com12 MMNNM
19 18 adantr MNVMNNM
20 ssid 00
21 simpl NMN=0NM
22 breq1 N=0NM0M
23 dvdszrcl NMNM
24 23 simprd NMM
25 0dvds M0MM=0
26 24 25 syl NM0MM=0
27 22 26 sylan9bbr NMN=0NMM=0
28 21 27 mpbid NMN=0M=0
29 28 breq1d NMN=0Mx0x
30 0dvds x0xx=0
31 29 30 sylan9bb NMN=0xMxx=0
32 31 rabbidva NMN=0x|Mx=x|x=0
33 0z 0
34 rabsn 0x|x=0=0
35 33 34 ax-mp x|x=0=0
36 32 35 eqtrdi NMN=0x|Mx=0
37 breq1 N=0Nx0x
38 37 rabbidv N=0x|Nx=x|0x
39 30 rabbiia x|0x=x|x=0
40 39 35 eqtri x|0x=0
41 38 40 eqtrdi N=0x|Nx=0
42 41 adantl NMN=0x|Nx=0
43 36 42 sseq12d NMN=0x|Mxx|Nx00
44 20 43 mpbiri NMN=0x|Mxx|Nx
45 24 zcnd NMM
46 45 ad2antrr NMN0nM
47 23 simpld NMN
48 47 zcnd NMN
49 48 ad2antrr NMN0nN
50 simplr NMN0nN0
51 46 49 50 divcan2d NMN0nNMN=M
52 51 breq1d NMN0nNMNnMn
53 47 adantr NMN0N
54 dvdsval2 NN0MNMMN
55 54 biimpd NN0MNMMN
56 55 3com23 NMN0NMMN
57 56 3expa NMN0NMMN
58 23 57 sylan NMN0NMMN
59 58 imp NMN0NMMN
60 59 anabss1 NMN0MN
61 53 60 jca NMN0NMN
62 muldvds1 NMNnNMNnNn
63 62 3expa NMNnNMNnNn
64 61 63 sylan NMN0nNMNnNn
65 52 64 sylbird NMN0nMnNn
66 65 ss2rabdv NMN0n|Mnn|Nn
67 breq2 n=xMnMx
68 67 cbvrabv n|Mn=x|Mx
69 breq2 n=xNnNx
70 69 cbvrabv n|Nn=x|Nx
71 66 68 70 3sstr3g NMN0x|Mxx|Nx
72 44 71 pm2.61dane NMx|Mxx|Nx
73 breq1 n=MnxMx
74 73 rabbidv n=Mx|nx=x|Mx
75 73 abbidv n=Mx|nx=x|Mx
76 74 75 eqeq12d n=Mx|nx=x|nxx|Mx=x|Mx
77 simpr ynyny
78 dvdszrcl nyny
79 78 simprd nyy
80 79 ancri nyyny
81 77 80 impbii ynyny
82 breq2 x=ynxny
83 82 elrab yx|nxyny
84 vex yV
85 84 82 elab yx|nxny
86 81 83 85 3bitr4i yx|nxyx|nx
87 86 eqriv x|nx=x|nx
88 76 87 vtoclg Mx|Mx=x|Mx
89 88 adantr MNVx|Mx=x|Mx
90 breq1 n=NnxNx
91 90 rabbidv n=Nx|nx=x|Nx
92 90 abbidv n=Nx|nx=x|Nx
93 91 92 eqeq12d n=Nx|nx=x|nxx|Nx=x|Nx
94 93 87 vtoclg NVx|Nx=x|Nx
95 94 adantl MNVx|Nx=x|Nx
96 89 95 sseq12d MNVx|Mxx|Nxx|Mxx|Nx
97 72 96 imbitrid MNVNMx|Mxx|Nx
98 9 15 sseq12i MNx|Mxx|Nx
99 97 98 syl6ibr MNVNMMN
100 19 99 impbid MNVMNNM
101 1 2 100 syl2anc φMNNM