Metamath Proof Explorer


Theorem oaun3lem1

Description: The class of all ordinal sums of elements from two ordinals is ordinal. Lemma for oaun3 . (Contributed by RP, 13-Feb-2025)

Ref Expression
Assertion oaun3lem1 AOnBOnOrdx|aAbBx=a+𝑜b

Proof

Step Hyp Ref Expression
1 nfv aAOnBOn
2 nfcv _ay
3 nfre1 aaAbBx=a+𝑜b
4 3 nfsab azx|aAbBx=a+𝑜b
5 2 4 nfralw azyzx|aAbBx=a+𝑜b
6 nfv bAOnBOnaA
7 nfcv _by
8 nfcv _bA
9 nfre1 bbBx=a+𝑜b
10 8 9 nfrexw baAbBx=a+𝑜b
11 10 nfsab bzx|aAbBx=a+𝑜b
12 7 11 nfralw bzyzx|aAbBx=a+𝑜b
13 simp-4l AOnBOnaAbBza+𝑜bzaAOn
14 simplrl AOnBOnaAbBza+𝑜baA
15 14 anim1ci AOnBOnaAbBza+𝑜bzazaaA
16 ontr1 AOnzaaAzA
17 13 15 16 sylc AOnBOnaAbBza+𝑜bzazA
18 simpr AOnBOnBOn
19 ne0i bBB
20 19 adantl aAbBB
21 on0eln0 BOnBB
22 21 biimpar BOnBB
23 18 20 22 syl2an AOnBOnaAbBB
24 onelon AOnaAaOn
25 24 ad2ant2r AOnBOnaAbBaOn
26 simpr aAbBbB
27 onelon BOnbBbOn
28 18 26 27 syl2an AOnBOnaAbBbOn
29 oacl aOnbOna+𝑜bOn
30 25 28 29 syl2anc AOnBOnaAbBa+𝑜bOn
31 onelon a+𝑜bOnza+𝑜bzOn
32 30 31 sylan AOnBOnaAbBza+𝑜bzOn
33 oa0 zOnz+𝑜=z
34 32 33 syl AOnBOnaAbBza+𝑜bz+𝑜=z
35 34 eqcomd AOnBOnaAbBza+𝑜bz=z+𝑜
36 oveq2 y=z+𝑜y=z+𝑜
37 36 rspceeqv Bz=z+𝑜yBz=z+𝑜y
38 23 35 37 syl2an2r AOnBOnaAbBza+𝑜byBz=z+𝑜y
39 38 adantr AOnBOnaAbBza+𝑜bzayBz=z+𝑜y
40 oveq1 w=zw+𝑜y=z+𝑜y
41 40 eqeq2d w=zz=w+𝑜yz=z+𝑜y
42 41 rexbidv w=zyBz=w+𝑜yyBz=z+𝑜y
43 42 rspcev zAyBz=z+𝑜ywAyBz=w+𝑜y
44 17 39 43 syl2anc AOnBOnaAbBza+𝑜bzawAyBz=w+𝑜y
45 18 adantr AOnBOnaAbBBOn
46 25 45 jca AOnBOnaAbBaOnBOn
47 46 adantr AOnBOnaAbBza+𝑜baOnBOn
48 oacl aOnBOna+𝑜BOn
49 25 45 48 syl2anc AOnBOnaAbBa+𝑜BOn
50 eloni a+𝑜bOnOrda+𝑜b
51 eloni a+𝑜BOnOrda+𝑜B
52 50 51 anim12i a+𝑜bOna+𝑜BOnOrda+𝑜bOrda+𝑜B
53 30 49 52 syl2anc AOnBOnaAbBOrda+𝑜bOrda+𝑜B
54 45 25 jca AOnBOnaAbBBOnaOn
55 26 adantl AOnBOnaAbBbB
56 oaordi BOnaOnbBa+𝑜ba+𝑜B
57 54 55 56 sylc AOnBOnaAbBa+𝑜ba+𝑜B
58 ordelpss Orda+𝑜bOrda+𝑜Ba+𝑜ba+𝑜Ba+𝑜ba+𝑜B
59 58 biimpd Orda+𝑜bOrda+𝑜Ba+𝑜ba+𝑜Ba+𝑜ba+𝑜B
60 53 57 59 sylc AOnBOnaAbBa+𝑜ba+𝑜B
61 60 pssssd AOnBOnaAbBa+𝑜ba+𝑜B
62 61 sselda AOnBOnaAbBza+𝑜bza+𝑜B
63 62 anim1ci AOnBOnaAbBza+𝑜bazazza+𝑜B
64 oawordex2 aOnBOnazza+𝑜ByBa+𝑜y=z
65 47 63 64 syl2an2r AOnBOnaAbBza+𝑜bazyBa+𝑜y=z
66 oveq1 w=aw+𝑜y=a+𝑜y
67 66 eqeq2d w=az=w+𝑜yz=a+𝑜y
68 eqcom z=a+𝑜ya+𝑜y=z
69 67 68 bitrdi w=az=w+𝑜ya+𝑜y=z
70 69 rexbidv w=ayBz=w+𝑜yyBa+𝑜y=z
71 70 rspcev aAyBa+𝑜y=zwAyBz=w+𝑜y
72 14 65 71 syl2an2r AOnBOnaAbBza+𝑜bazwAyBz=w+𝑜y
73 eloni zOnOrdz
74 32 73 syl AOnBOnaAbBza+𝑜bOrdz
75 eloni aOnOrda
76 25 75 syl AOnBOnaAbBOrda
77 76 adantr AOnBOnaAbBza+𝑜bOrda
78 ordtri2or OrdzOrdazaaz
79 74 77 78 syl2anc AOnBOnaAbBza+𝑜bzaaz
80 44 72 79 mpjaodan AOnBOnaAbBza+𝑜bwAyBz=w+𝑜y
81 vex zV
82 eqeq1 x=zx=a+𝑜bz=a+𝑜b
83 82 2rexbidv x=zaAbBx=a+𝑜baAbBz=a+𝑜b
84 oveq1 a=wa+𝑜b=w+𝑜b
85 84 eqeq2d a=wz=a+𝑜bz=w+𝑜b
86 oveq2 b=yw+𝑜b=w+𝑜y
87 86 eqeq2d b=yz=w+𝑜bz=w+𝑜y
88 85 87 cbvrex2vw aAbBz=a+𝑜bwAyBz=w+𝑜y
89 83 88 bitrdi x=zaAbBx=a+𝑜bwAyBz=w+𝑜y
90 81 89 elab zx|aAbBx=a+𝑜bwAyBz=w+𝑜y
91 80 90 sylibr AOnBOnaAbBza+𝑜bzx|aAbBx=a+𝑜b
92 91 ralrimiva AOnBOnaAbBza+𝑜bzx|aAbBx=a+𝑜b
93 92 adantr AOnBOnaAbBy=a+𝑜bza+𝑜bzx|aAbBx=a+𝑜b
94 simpr AOnBOnaAbBy=a+𝑜by=a+𝑜b
95 94 raleqdv AOnBOnaAbBy=a+𝑜bzyzx|aAbBx=a+𝑜bza+𝑜bzx|aAbBx=a+𝑜b
96 93 95 mpbird AOnBOnaAbBy=a+𝑜bzyzx|aAbBx=a+𝑜b
97 96 exp31 AOnBOnaAbBy=a+𝑜bzyzx|aAbBx=a+𝑜b
98 97 expdimp AOnBOnaAbBy=a+𝑜bzyzx|aAbBx=a+𝑜b
99 6 12 98 rexlimd AOnBOnaAbBy=a+𝑜bzyzx|aAbBx=a+𝑜b
100 99 ex AOnBOnaAbBy=a+𝑜bzyzx|aAbBx=a+𝑜b
101 1 5 100 rexlimd AOnBOnaAbBy=a+𝑜bzyzx|aAbBx=a+𝑜b
102 101 alrimiv AOnBOnyaAbBy=a+𝑜bzyzx|aAbBx=a+𝑜b
103 eqeq1 x=yx=a+𝑜by=a+𝑜b
104 103 2rexbidv x=yaAbBx=a+𝑜baAbBy=a+𝑜b
105 104 ralab yx|aAbBx=a+𝑜bzyzx|aAbBx=a+𝑜byaAbBy=a+𝑜bzyzx|aAbBx=a+𝑜b
106 102 105 sylibr AOnBOnyx|aAbBx=a+𝑜bzyzx|aAbBx=a+𝑜b
107 dftr5 Trx|aAbBx=a+𝑜byx|aAbBx=a+𝑜bzyzx|aAbBx=a+𝑜b
108 106 107 sylibr AOnBOnTrx|aAbBx=a+𝑜b
109 simpr AOnBOnaAbBx=a+𝑜bx=a+𝑜b
110 30 adantr AOnBOnaAbBx=a+𝑜ba+𝑜bOn
111 109 110 eqeltrd AOnBOnaAbBx=a+𝑜bxOn
112 111 exp31 AOnBOnaAbBx=a+𝑜bxOn
113 112 rexlimdvv AOnBOnaAbBx=a+𝑜bxOn
114 113 abssdv AOnBOnx|aAbBx=a+𝑜bOn
115 epweon EWeOn
116 wess x|aAbBx=a+𝑜bOnEWeOnEWex|aAbBx=a+𝑜b
117 114 115 116 mpisyl AOnBOnEWex|aAbBx=a+𝑜b
118 df-ord Ordx|aAbBx=a+𝑜bTrx|aAbBx=a+𝑜bEWex|aAbBx=a+𝑜b
119 108 117 118 sylanbrc AOnBOnOrdx|aAbBx=a+𝑜b