Metamath Proof Explorer


Theorem ofoafg

Description: Addition operator for functions from sets into ordinals results in a function from the intersection of sets into an ordinal. (Contributed by RP, 5-Jan-2025)

Ref Expression
Assertion ofoafg AVBWC=ABDOnEOnF=dDd+𝑜Ef+𝑜DA×EB:DA×EBFC

Proof

Step Hyp Ref Expression
1 simp1 DOnEOnF=dDd+𝑜EDOn
2 simp1 AVBWC=ABAV
3 elmapg DOnAVfDAf:AD
4 1 2 3 syl2anr AVBWC=ABDOnEOnF=dDd+𝑜EfDAf:AD
5 simp2 DOnEOnF=dDd+𝑜EEOn
6 simp2 AVBWC=ABBW
7 elmapg EOnBWgEBg:BE
8 5 6 7 syl2anr AVBWC=ABDOnEOnF=dDd+𝑜EgEBg:BE
9 8 adantr AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADgEBg:BE
10 simpl f:ADg:BEf:AD
11 10 ffnd f:ADg:BEfFnA
12 11 adantl AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEfFnA
13 simpr f:ADg:BEg:BE
14 13 ffnd f:ADg:BEgFnB
15 14 adantl AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEgFnB
16 2 ad2antrr AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEAV
17 6 ad2antrr AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEBW
18 eqid AB=AB
19 12 15 16 17 18 offn AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEf+𝑜fgFnAB
20 simp3 AVBWC=ABC=AB
21 20 fneq2d AVBWC=ABf+𝑜fgFnCf+𝑜fgFnAB
22 21 ad2antrr AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEf+𝑜fgFnCf+𝑜fgFnAB
23 19 22 mpbird AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEf+𝑜fgFnC
24 fresin f:ADfC:ACD
25 24 adantr f:ADg:BEfC:ACD
26 25 adantl AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEfC:ACD
27 inss1 ABA
28 20 27 eqsstrdi AVBWC=ABCA
29 sseqin2 CAAC=C
30 28 29 sylib AVBWC=ABAC=C
31 30 ad2antrr AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEAC=C
32 31 feq2d AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEfC:ACDfC:CD
33 26 32 mpbid AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEfC:CD
34 33 ffvelcdmda AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEcCfCcD
35 5 ad3antlr AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEcCEOn
36 1 ad3antlr AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEcCDOn
37 onelon DOnfCcDfCcOn
38 36 34 37 syl2anc AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEcCfCcOn
39 fresin g:BEgC:BCE
40 39 adantl f:ADg:BEgC:BCE
41 40 adantl AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEgC:BCE
42 inss2 ABB
43 20 42 eqsstrdi AVBWC=ABCB
44 sseqin2 CBBC=C
45 43 44 sylib AVBWC=ABBC=C
46 45 ad2antrr AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEBC=C
47 46 feq2d AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEgC:BCEgC:CE
48 41 47 mpbid AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEgC:CE
49 48 ffvelcdmda AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEcCgCcE
50 oaordi EOnfCcOngCcEfCc+𝑜gCcfCc+𝑜E
51 50 imp EOnfCcOngCcEfCc+𝑜gCcfCc+𝑜E
52 35 38 49 51 syl21anc AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEcCfCc+𝑜gCcfCc+𝑜E
53 oveq1 d=fCcd+𝑜E=fCc+𝑜E
54 53 eliuni fCcDfCc+𝑜gCcfCc+𝑜EfCc+𝑜gCcdDd+𝑜E
55 34 52 54 syl2anc AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEcCfCc+𝑜gCcdDd+𝑜E
56 12 15 16 17 18 ofres AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEf+𝑜fg=fAB+𝑜fgAB
57 20 reseq2d AVBWC=ABfC=fAB
58 20 reseq2d AVBWC=ABgC=gAB
59 57 58 oveq12d AVBWC=ABfC+𝑜fgC=fAB+𝑜fgAB
60 59 ad2antrr AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEfC+𝑜fgC=fAB+𝑜fgAB
61 56 60 eqtr4d AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEf+𝑜fg=fC+𝑜fgC
62 61 fveq1d AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEf+𝑜fgc=fC+𝑜fgCc
63 62 adantr AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEcCf+𝑜fgc=fC+𝑜fgCc
64 28 ad2antrr AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BECA
65 12 64 fnssresd AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEfCFnC
66 43 ad2antrr AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BECB
67 15 66 fnssresd AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEgCFnC
68 65 67 jca AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEfCFnCgCFnC
69 inex1g AVABV
70 2 69 syl AVBWC=ABABV
71 20 70 eqeltrd AVBWC=ABCV
72 71 ad2antrr AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BECV
73 72 anim1i AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEcCCVcC
74 fnfvof fCFnCgCFnCCVcCfC+𝑜fgCc=fCc+𝑜gCc
75 68 73 74 syl2an2r AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEcCfC+𝑜fgCc=fCc+𝑜gCc
76 63 75 eqtrd AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEcCf+𝑜fgc=fCc+𝑜gCc
77 simp3 DOnEOnF=dDd+𝑜EF=dDd+𝑜E
78 77 ad3antlr AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEcCF=dDd+𝑜E
79 55 76 78 3eltr4d AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEcCf+𝑜fgcF
80 79 ralrimiva AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEcCf+𝑜fgcF
81 fnfvrnss f+𝑜fgFnCcCf+𝑜fgcFranf+𝑜fgF
82 80 81 sylan2 f+𝑜fgFnCAVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEranf+𝑜fgF
83 82 expcom AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEf+𝑜fgFnCranf+𝑜fgF
84 23 83 jcai AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEf+𝑜fgFnCranf+𝑜fgF
85 onelon DOndDdOn
86 85 adantlr DOnEOndDdOn
87 simpr DOnEOnEOn
88 87 adantr DOnEOndDEOn
89 oacl dOnEOnd+𝑜EOn
90 86 88 89 syl2anc DOnEOndDd+𝑜EOn
91 90 ralrimiva DOnEOndDd+𝑜EOn
92 iunon DOndDd+𝑜EOndDd+𝑜EOn
93 91 92 syldan DOnEOndDd+𝑜EOn
94 93 3adant3 DOnEOnF=dDd+𝑜EdDd+𝑜EOn
95 77 94 eqeltrd DOnEOnF=dDd+𝑜EFOn
96 95 adantl AVBWC=ABDOnEOnF=dDd+𝑜EFOn
97 96 adantr AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEFOn
98 97 72 elmapd AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEf+𝑜fgFCf+𝑜fg:CF
99 df-f f+𝑜fg:CFf+𝑜fgFnCranf+𝑜fgF
100 98 99 bitrdi AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEf+𝑜fgFCf+𝑜fgFnCranf+𝑜fgF
101 84 100 mpbird AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEf+𝑜fgFC
102 101 expr AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADg:BEf+𝑜fgFC
103 9 102 sylbid AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADgEBf+𝑜fgFC
104 103 ralrimiv AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADgEBf+𝑜fgFC
105 104 ex AVBWC=ABDOnEOnF=dDd+𝑜Ef:ADgEBf+𝑜fgFC
106 4 105 sylbid AVBWC=ABDOnEOnF=dDd+𝑜EfDAgEBf+𝑜fgFC
107 106 ralrimiv AVBWC=ABDOnEOnF=dDd+𝑜EfDAgEBf+𝑜fgFC
108 ofmres f+𝑜DA×EB=fDA,gEBf+𝑜fg
109 108 fmpo fDAgEBf+𝑜fgFCf+𝑜DA×EB:DA×EBFC
110 107 109 sylib AVBWC=ABDOnEOnF=dDd+𝑜Ef+𝑜DA×EB:DA×EBFC