Metamath Proof Explorer


Theorem ofpreima

Description: Express the preimage of a function operation as a union of preimages. (Contributed by Thierry Arnoux, 8-Mar-2018)

Ref Expression
Hypotheses ofpreima.1 φ F : A B
ofpreima.2 φ G : A C
ofpreima.3 φ A V
ofpreima.4 φ R Fn B × C
Assertion ofpreima φ F R f G -1 D = p R -1 D F -1 1 st p G -1 2 nd p

Proof

Step Hyp Ref Expression
1 ofpreima.1 φ F : A B
2 ofpreima.2 φ G : A C
3 ofpreima.3 φ A V
4 ofpreima.4 φ R Fn B × C
5 nfmpt1 _ s s A F s G s
6 eqidd φ s A F s G s = s A F s G s
7 fnov R Fn B × C R = x B , y C x R y
8 4 7 sylib φ R = x B , y C x R y
9 5 1 2 3 6 8 ofoprabco φ F R f G = R s A F s G s
10 9 cnveqd φ F R f G -1 = R s A F s G s -1
11 cnvco R s A F s G s -1 = s A F s G s -1 R -1
12 10 11 eqtrdi φ F R f G -1 = s A F s G s -1 R -1
13 12 imaeq1d φ F R f G -1 D = s A F s G s -1 R -1 D
14 imaco s A F s G s -1 R -1 D = s A F s G s -1 R -1 D
15 13 14 eqtrdi φ F R f G -1 D = s A F s G s -1 R -1 D
16 dfima2 s A F s G s -1 R -1 D = q | p R -1 D p s A F s G s -1 q
17 vex p V
18 vex q V
19 17 18 brcnv p s A F s G s -1 q q s A F s G s p
20 funmpt Fun s A F s G s
21 funbrfv2b Fun s A F s G s q s A F s G s p q dom s A F s G s s A F s G s q = p
22 20 21 ax-mp q s A F s G s p q dom s A F s G s s A F s G s q = p
23 opex F s G s V
24 eqid s A F s G s = s A F s G s
25 23 24 dmmpti dom s A F s G s = A
26 25 eleq2i q dom s A F s G s q A
27 26 anbi1i q dom s A F s G s s A F s G s q = p q A s A F s G s q = p
28 22 27 bitri q s A F s G s p q A s A F s G s q = p
29 fveq2 s = q F s = F q
30 fveq2 s = q G s = G q
31 29 30 opeq12d s = q F s G s = F q G q
32 opex F q G q V
33 31 24 32 fvmpt q A s A F s G s q = F q G q
34 33 eqeq1d q A s A F s G s q = p F q G q = p
35 34 pm5.32i q A s A F s G s q = p q A F q G q = p
36 19 28 35 3bitri p s A F s G s -1 q q A F q G q = p
37 36 rexbii p R -1 D p s A F s G s -1 q p R -1 D q A F q G q = p
38 37 abbii q | p R -1 D p s A F s G s -1 q = q | p R -1 D q A F q G q = p
39 nfv q φ
40 nfab1 _ q q | p R -1 D q A F q G q = p
41 nfcv _ q p R -1 D F -1 1 st p G -1 2 nd p
42 eliun q p R -1 D F -1 1 st p G -1 2 nd p p R -1 D q F -1 1 st p G -1 2 nd p
43 ffn F : A B F Fn A
44 fniniseg F Fn A q F -1 1 st p q A F q = 1 st p
45 1 43 44 3syl φ q F -1 1 st p q A F q = 1 st p
46 ffn G : A C G Fn A
47 fniniseg G Fn A q G -1 2 nd p q A G q = 2 nd p
48 2 46 47 3syl φ q G -1 2 nd p q A G q = 2 nd p
49 45 48 anbi12d φ q F -1 1 st p q G -1 2 nd p q A F q = 1 st p q A G q = 2 nd p
50 elin q F -1 1 st p G -1 2 nd p q F -1 1 st p q G -1 2 nd p
51 anandi q A F q = 1 st p G q = 2 nd p q A F q = 1 st p q A G q = 2 nd p
52 49 50 51 3bitr4g φ q F -1 1 st p G -1 2 nd p q A F q = 1 st p G q = 2 nd p
53 52 adantr φ p R -1 D q F -1 1 st p G -1 2 nd p q A F q = 1 st p G q = 2 nd p
54 cnvimass R -1 D dom R
55 4 fndmd φ dom R = B × C
56 54 55 sseqtrid φ R -1 D B × C
57 56 sselda φ p R -1 D p B × C
58 1st2nd2 p B × C p = 1 st p 2 nd p
59 eqeq2 p = 1 st p 2 nd p F q G q = p F q G q = 1 st p 2 nd p
60 57 58 59 3syl φ p R -1 D F q G q = p F q G q = 1 st p 2 nd p
61 fvex F q V
62 fvex G q V
63 61 62 opth F q G q = 1 st p 2 nd p F q = 1 st p G q = 2 nd p
64 60 63 syl6bb φ p R -1 D F q G q = p F q = 1 st p G q = 2 nd p
65 64 anbi2d φ p R -1 D q A F q G q = p q A F q = 1 st p G q = 2 nd p
66 53 65 bitr4d φ p R -1 D q F -1 1 st p G -1 2 nd p q A F q G q = p
67 66 rexbidva φ p R -1 D q F -1 1 st p G -1 2 nd p p R -1 D q A F q G q = p
68 abid q q | p R -1 D q A F q G q = p p R -1 D q A F q G q = p
69 67 68 bitr4di φ p R -1 D q F -1 1 st p G -1 2 nd p q q | p R -1 D q A F q G q = p
70 42 69 syl5rbb φ q q | p R -1 D q A F q G q = p q p R -1 D F -1 1 st p G -1 2 nd p
71 39 40 41 70 eqrd φ q | p R -1 D q A F q G q = p = p R -1 D F -1 1 st p G -1 2 nd p
72 38 71 syl5eq φ q | p R -1 D p s A F s G s -1 q = p R -1 D F -1 1 st p G -1 2 nd p
73 16 72 syl5eq φ s A F s G s -1 R -1 D = p R -1 D F -1 1 st p G -1 2 nd p
74 15 73 eqtrd φ F R f G -1 D = p R -1 D F -1 1 st p G -1 2 nd p