Metamath Proof Explorer


Theorem ofpreima

Description: Express the preimage of a function operation as a union of preimages. (Contributed by Thierry Arnoux, 8-Mar-2018)

Ref Expression
Hypotheses ofpreima.1 φF:AB
ofpreima.2 φG:AC
ofpreima.3 φAV
ofpreima.4 φRFnB×C
Assertion ofpreima φFRfG-1D=pR-1DF-11stpG-12ndp

Proof

Step Hyp Ref Expression
1 ofpreima.1 φF:AB
2 ofpreima.2 φG:AC
3 ofpreima.3 φAV
4 ofpreima.4 φRFnB×C
5 nfmpt1 _ssAFsGs
6 eqidd φsAFsGs=sAFsGs
7 fnov RFnB×CR=xB,yCxRy
8 4 7 sylib φR=xB,yCxRy
9 5 1 2 3 6 8 ofoprabco φFRfG=RsAFsGs
10 9 cnveqd φFRfG-1=RsAFsGs-1
11 cnvco RsAFsGs-1=sAFsGs-1R-1
12 10 11 eqtrdi φFRfG-1=sAFsGs-1R-1
13 12 imaeq1d φFRfG-1D=sAFsGs-1R-1D
14 imaco sAFsGs-1R-1D=sAFsGs-1R-1D
15 13 14 eqtrdi φFRfG-1D=sAFsGs-1R-1D
16 dfima2 sAFsGs-1R-1D=q|pR-1DpsAFsGs-1q
17 vex pV
18 vex qV
19 17 18 brcnv psAFsGs-1qqsAFsGsp
20 funmpt FunsAFsGs
21 funbrfv2b FunsAFsGsqsAFsGspqdomsAFsGssAFsGsq=p
22 20 21 ax-mp qsAFsGspqdomsAFsGssAFsGsq=p
23 opex FsGsV
24 eqid sAFsGs=sAFsGs
25 23 24 dmmpti domsAFsGs=A
26 25 eleq2i qdomsAFsGsqA
27 26 anbi1i qdomsAFsGssAFsGsq=pqAsAFsGsq=p
28 22 27 bitri qsAFsGspqAsAFsGsq=p
29 fveq2 s=qFs=Fq
30 fveq2 s=qGs=Gq
31 29 30 opeq12d s=qFsGs=FqGq
32 opex FqGqV
33 31 24 32 fvmpt qAsAFsGsq=FqGq
34 33 eqeq1d qAsAFsGsq=pFqGq=p
35 34 pm5.32i qAsAFsGsq=pqAFqGq=p
36 19 28 35 3bitri psAFsGs-1qqAFqGq=p
37 36 rexbii pR-1DpsAFsGs-1qpR-1DqAFqGq=p
38 37 abbii q|pR-1DpsAFsGs-1q=q|pR-1DqAFqGq=p
39 nfv qφ
40 nfab1 _qq|pR-1DqAFqGq=p
41 nfcv _qpR-1DF-11stpG-12ndp
42 eliun qpR-1DF-11stpG-12ndppR-1DqF-11stpG-12ndp
43 ffn F:ABFFnA
44 fniniseg FFnAqF-11stpqAFq=1stp
45 1 43 44 3syl φqF-11stpqAFq=1stp
46 ffn G:ACGFnA
47 fniniseg GFnAqG-12ndpqAGq=2ndp
48 2 46 47 3syl φqG-12ndpqAGq=2ndp
49 45 48 anbi12d φqF-11stpqG-12ndpqAFq=1stpqAGq=2ndp
50 elin qF-11stpG-12ndpqF-11stpqG-12ndp
51 anandi qAFq=1stpGq=2ndpqAFq=1stpqAGq=2ndp
52 49 50 51 3bitr4g φqF-11stpG-12ndpqAFq=1stpGq=2ndp
53 52 adantr φpR-1DqF-11stpG-12ndpqAFq=1stpGq=2ndp
54 cnvimass R-1DdomR
55 4 fndmd φdomR=B×C
56 54 55 sseqtrid φR-1DB×C
57 56 sselda φpR-1DpB×C
58 1st2nd2 pB×Cp=1stp2ndp
59 eqeq2 p=1stp2ndpFqGq=pFqGq=1stp2ndp
60 57 58 59 3syl φpR-1DFqGq=pFqGq=1stp2ndp
61 fvex FqV
62 fvex GqV
63 61 62 opth FqGq=1stp2ndpFq=1stpGq=2ndp
64 60 63 bitrdi φpR-1DFqGq=pFq=1stpGq=2ndp
65 64 anbi2d φpR-1DqAFqGq=pqAFq=1stpGq=2ndp
66 53 65 bitr4d φpR-1DqF-11stpG-12ndpqAFqGq=p
67 66 rexbidva φpR-1DqF-11stpG-12ndppR-1DqAFqGq=p
68 abid qq|pR-1DqAFqGq=ppR-1DqAFqGq=p
69 67 68 bitr4di φpR-1DqF-11stpG-12ndpqq|pR-1DqAFqGq=p
70 42 69 bitr2id φqq|pR-1DqAFqGq=pqpR-1DF-11stpG-12ndp
71 39 40 41 70 eqrd φq|pR-1DqAFqGq=p=pR-1DF-11stpG-12ndp
72 38 71 eqtrid φq|pR-1DpsAFsGs-1q=pR-1DF-11stpG-12ndp
73 16 72 eqtrid φsAFsGs-1R-1D=pR-1DF-11stpG-12ndp
74 15 73 eqtrd φFRfG-1D=pR-1DF-11stpG-12ndp