Description: Express the preimage of a function operation as a union of preimages. (Contributed by Thierry Arnoux, 8-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ofpreima.1 | |
|
ofpreima.2 | |
||
ofpreima.3 | |
||
ofpreima.4 | |
||
Assertion | ofpreima | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofpreima.1 | |
|
2 | ofpreima.2 | |
|
3 | ofpreima.3 | |
|
4 | ofpreima.4 | |
|
5 | nfmpt1 | |
|
6 | eqidd | |
|
7 | fnov | |
|
8 | 4 7 | sylib | |
9 | 5 1 2 3 6 8 | ofoprabco | |
10 | 9 | cnveqd | |
11 | cnvco | |
|
12 | 10 11 | eqtrdi | |
13 | 12 | imaeq1d | |
14 | imaco | |
|
15 | 13 14 | eqtrdi | |
16 | dfima2 | |
|
17 | vex | |
|
18 | vex | |
|
19 | 17 18 | brcnv | |
20 | funmpt | |
|
21 | funbrfv2b | |
|
22 | 20 21 | ax-mp | |
23 | opex | |
|
24 | eqid | |
|
25 | 23 24 | dmmpti | |
26 | 25 | eleq2i | |
27 | 26 | anbi1i | |
28 | 22 27 | bitri | |
29 | fveq2 | |
|
30 | fveq2 | |
|
31 | 29 30 | opeq12d | |
32 | opex | |
|
33 | 31 24 32 | fvmpt | |
34 | 33 | eqeq1d | |
35 | 34 | pm5.32i | |
36 | 19 28 35 | 3bitri | |
37 | 36 | rexbii | |
38 | 37 | abbii | |
39 | nfv | |
|
40 | nfab1 | |
|
41 | nfcv | |
|
42 | eliun | |
|
43 | ffn | |
|
44 | fniniseg | |
|
45 | 1 43 44 | 3syl | |
46 | ffn | |
|
47 | fniniseg | |
|
48 | 2 46 47 | 3syl | |
49 | 45 48 | anbi12d | |
50 | elin | |
|
51 | anandi | |
|
52 | 49 50 51 | 3bitr4g | |
53 | 52 | adantr | |
54 | cnvimass | |
|
55 | 4 | fndmd | |
56 | 54 55 | sseqtrid | |
57 | 56 | sselda | |
58 | 1st2nd2 | |
|
59 | eqeq2 | |
|
60 | 57 58 59 | 3syl | |
61 | fvex | |
|
62 | fvex | |
|
63 | 61 62 | opth | |
64 | 60 63 | bitrdi | |
65 | 64 | anbi2d | |
66 | 53 65 | bitr4d | |
67 | 66 | rexbidva | |
68 | abid | |
|
69 | 67 68 | bitr4di | |
70 | 42 69 | bitr2id | |
71 | 39 40 41 70 | eqrd | |
72 | 38 71 | eqtrid | |
73 | 16 72 | eqtrid | |
74 | 15 73 | eqtrd | |