Metamath Proof Explorer


Theorem onint1

Description: The ordinal T_1 spaces are 1o and 2o , proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 9-Nov-2015)

Ref Expression
Assertion onint1 OnFre=1𝑜2𝑜

Proof

Step Hyp Ref Expression
1 elin jOnFrejOnjFre
2 eqid j=j
3 2 ist1 jFrejTopajaClsdj
4 3 simprbi jFreajaClsdj
5 onelon jOnjjjOn
6 5 ex jOnjjjOn
7 neldifsnd 2𝑜j¬j
8 p0ex V
9 8 prid2
10 df2o2 2𝑜=
11 9 10 eleqtrri 2𝑜
12 elunii 2𝑜2𝑜jj
13 11 12 mpan 2𝑜jj
14 df1o2 1𝑜=
15 1on 1𝑜On
16 14 15 eqeltrri On
17 16 onirri ¬
18 17 a1i 2𝑜j¬
19 13 18 eldifd 2𝑜jj
20 19 ne0d 2𝑜jj
21 7 20 2thd 2𝑜j¬jj
22 nbbn ¬jj¬jj
23 21 22 sylib 2𝑜j¬jj
24 on0eln0 jOnjj
25 23 24 nsyl 2𝑜j¬jOn
26 6 25 nsyli jOn2𝑜j¬jj
27 26 imp jOn2𝑜j¬jj
28 0ex V
29 28 prid1
30 29 10 eleqtrri 2𝑜
31 elunii 2𝑜2𝑜jj
32 30 31 mpan 2𝑜jj
33 32 adantl jOn2𝑜jj
34 simpr jOn2𝑜ja=a=
35 34 sneqd jOn2𝑜ja=a=
36 35 eleq1d jOn2𝑜ja=aClsdjClsdj
37 33 36 rspcdv jOn2𝑜jajaClsdjClsdj
38 2 cldopn Clsdjjj
39 37 38 syl6 jOn2𝑜jajaClsdjjj
40 27 39 mtod jOn2𝑜j¬ajaClsdj
41 40 ex jOn2𝑜j¬ajaClsdj
42 41 con2d jOnajaClsdj¬2𝑜j
43 4 42 syl5 jOnjFre¬2𝑜j
44 2on 2𝑜On
45 ontri1 jOn2𝑜Onj2𝑜¬2𝑜j
46 onsssuc jOn2𝑜Onj2𝑜jsuc2𝑜
47 45 46 bitr3d jOn2𝑜On¬2𝑜jjsuc2𝑜
48 44 47 mpan2 jOn¬2𝑜jjsuc2𝑜
49 43 48 sylibd jOnjFrejsuc2𝑜
50 49 imp jOnjFrejsuc2𝑜
51 0ntop ¬Top
52 t1top FreTop
53 51 52 mto ¬Fre
54 nelneq jFre¬Fre¬j=
55 53 54 mpan2 jFre¬j=
56 elsni jj=
57 55 56 nsyl jFre¬j
58 57 adantl jOnjFre¬j
59 50 58 eldifd jOnjFrejsuc2𝑜
60 1 59 sylbi jOnFrejsuc2𝑜
61 60 ssriv OnFresuc2𝑜
62 df-suc suc2𝑜=2𝑜2𝑜
63 62 difeq1i suc2𝑜=2𝑜2𝑜
64 difundir 2𝑜2𝑜=2𝑜2𝑜
65 63 64 eqtri suc2𝑜=2𝑜2𝑜
66 df-pr 1𝑜2𝑜=1𝑜2𝑜
67 df2o3 2𝑜=1𝑜
68 df-pr 1𝑜=1𝑜
69 67 68 eqtri 2𝑜=1𝑜
70 69 difeq1i 2𝑜=1𝑜
71 difundir 1𝑜=1𝑜
72 difid =
73 1n0 1𝑜
74 disjsn2 1𝑜1𝑜=
75 73 74 ax-mp 1𝑜=
76 75 difeq2i 1𝑜1𝑜=1𝑜
77 difin 1𝑜1𝑜=1𝑜
78 dif0 1𝑜=1𝑜
79 76 77 78 3eqtr3i 1𝑜=1𝑜
80 72 79 uneq12i 1𝑜=1𝑜
81 uncom 1𝑜=1𝑜
82 un0 1𝑜=1𝑜
83 80 81 82 3eqtri 1𝑜=1𝑜
84 70 71 83 3eqtri 2𝑜=1𝑜
85 2on0 2𝑜
86 disjsn2 2𝑜2𝑜=
87 85 86 ax-mp 2𝑜=
88 87 difeq2i 2𝑜2𝑜=2𝑜
89 difin 2𝑜2𝑜=2𝑜
90 dif0 2𝑜=2𝑜
91 88 89 90 3eqtr3i 2𝑜=2𝑜
92 84 91 uneq12i 2𝑜2𝑜=1𝑜2𝑜
93 66 92 eqtr4i 1𝑜2𝑜=2𝑜2𝑜
94 65 93 eqtr4i suc2𝑜=1𝑜2𝑜
95 61 94 sseqtri OnFre1𝑜2𝑜
96 ssoninhaus 1𝑜2𝑜OnHaus
97 haust1 jHausjFre
98 97 ssriv HausFre
99 sslin HausFreOnHausOnFre
100 98 99 ax-mp OnHausOnFre
101 96 100 sstri 1𝑜2𝑜OnFre
102 95 101 eqssi OnFre=1𝑜2𝑜