Metamath Proof Explorer


Theorem opnsubg

Description: An open subgroup of a topological group is also closed. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypothesis subgntr.h J=TopOpenG
Assertion opnsubg GTopGrpSSubGrpGSJSClsdJ

Proof

Step Hyp Ref Expression
1 subgntr.h J=TopOpenG
2 eqid BaseG=BaseG
3 2 subgss SSubGrpGSBaseG
4 3 3ad2ant2 GTopGrpSSubGrpGSJSBaseG
5 1 2 tgptopon GTopGrpJTopOnBaseG
6 5 3ad2ant1 GTopGrpSSubGrpGSJJTopOnBaseG
7 toponuni JTopOnBaseGBaseG=J
8 6 7 syl GTopGrpSSubGrpGSJBaseG=J
9 4 8 sseqtrd GTopGrpSSubGrpGSJSJ
10 8 difeq1d GTopGrpSSubGrpGSJBaseGS=JS
11 df-ima yBaseGx+GyS=ranyBaseGx+GyS
12 4 adantr GTopGrpSSubGrpGSJxBaseGSSBaseG
13 12 resmptd GTopGrpSSubGrpGSJxBaseGSyBaseGx+GyS=ySx+Gy
14 13 rneqd GTopGrpSSubGrpGSJxBaseGSranyBaseGx+GyS=ranySx+Gy
15 11 14 eqtrid GTopGrpSSubGrpGSJxBaseGSyBaseGx+GyS=ranySx+Gy
16 simpl1 GTopGrpSSubGrpGSJxBaseGSGTopGrp
17 eldifi xBaseGSxBaseG
18 17 adantl GTopGrpSSubGrpGSJxBaseGSxBaseG
19 eqid yBaseGx+Gy=yBaseGx+Gy
20 eqid +G=+G
21 19 2 20 1 tgplacthmeo GTopGrpxBaseGyBaseGx+GyJHomeoJ
22 16 18 21 syl2anc GTopGrpSSubGrpGSJxBaseGSyBaseGx+GyJHomeoJ
23 simpl3 GTopGrpSSubGrpGSJxBaseGSSJ
24 hmeoima yBaseGx+GyJHomeoJSJyBaseGx+GySJ
25 22 23 24 syl2anc GTopGrpSSubGrpGSJxBaseGSyBaseGx+GySJ
26 15 25 eqeltrrd GTopGrpSSubGrpGSJxBaseGSranySx+GyJ
27 tgpgrp GTopGrpGGrp
28 16 27 syl GTopGrpSSubGrpGSJxBaseGSGGrp
29 eqid 0G=0G
30 2 20 29 grprid GGrpxBaseGx+G0G=x
31 28 18 30 syl2anc GTopGrpSSubGrpGSJxBaseGSx+G0G=x
32 simpl2 GTopGrpSSubGrpGSJxBaseGSSSubGrpG
33 29 subg0cl SSubGrpG0GS
34 32 33 syl GTopGrpSSubGrpGSJxBaseGS0GS
35 ovex x+G0GV
36 eqid ySx+Gy=ySx+Gy
37 oveq2 y=0Gx+Gy=x+G0G
38 36 37 elrnmpt1s 0GSx+G0GVx+G0GranySx+Gy
39 34 35 38 sylancl GTopGrpSSubGrpGSJxBaseGSx+G0GranySx+Gy
40 31 39 eqeltrrd GTopGrpSSubGrpGSJxBaseGSxranySx+Gy
41 28 adantr GTopGrpSSubGrpGSJxBaseGSySGGrp
42 18 adantr GTopGrpSSubGrpGSJxBaseGSySxBaseG
43 12 sselda GTopGrpSSubGrpGSJxBaseGSySyBaseG
44 2 20 grpcl GGrpxBaseGyBaseGx+GyBaseG
45 41 42 43 44 syl3anc GTopGrpSSubGrpGSJxBaseGSySx+GyBaseG
46 eldifn xBaseGS¬xS
47 46 ad2antlr GTopGrpSSubGrpGSJxBaseGSyS¬xS
48 eqid -G=-G
49 48 subgsubcl SSubGrpGx+GySySx+Gy-GyS
50 49 3com23 SSubGrpGySx+GySx+Gy-GyS
51 50 3expia SSubGrpGySx+GySx+Gy-GyS
52 32 51 sylan GTopGrpSSubGrpGSJxBaseGSySx+GySx+Gy-GyS
53 2 20 48 grppncan GGrpxBaseGyBaseGx+Gy-Gy=x
54 41 42 43 53 syl3anc GTopGrpSSubGrpGSJxBaseGSySx+Gy-Gy=x
55 54 eleq1d GTopGrpSSubGrpGSJxBaseGSySx+Gy-GySxS
56 52 55 sylibd GTopGrpSSubGrpGSJxBaseGSySx+GySxS
57 47 56 mtod GTopGrpSSubGrpGSJxBaseGSyS¬x+GyS
58 45 57 eldifd GTopGrpSSubGrpGSJxBaseGSySx+GyBaseGS
59 58 fmpttd GTopGrpSSubGrpGSJxBaseGSySx+Gy:SBaseGS
60 59 frnd GTopGrpSSubGrpGSJxBaseGSranySx+GyBaseGS
61 eleq2 u=ranySx+GyxuxranySx+Gy
62 sseq1 u=ranySx+GyuBaseGSranySx+GyBaseGS
63 61 62 anbi12d u=ranySx+GyxuuBaseGSxranySx+GyranySx+GyBaseGS
64 63 rspcev ranySx+GyJxranySx+GyranySx+GyBaseGSuJxuuBaseGS
65 26 40 60 64 syl12anc GTopGrpSSubGrpGSJxBaseGSuJxuuBaseGS
66 65 ralrimiva GTopGrpSSubGrpGSJxBaseGSuJxuuBaseGS
67 topontop JTopOnBaseGJTop
68 6 67 syl GTopGrpSSubGrpGSJJTop
69 eltop2 JTopBaseGSJxBaseGSuJxuuBaseGS
70 68 69 syl GTopGrpSSubGrpGSJBaseGSJxBaseGSuJxuuBaseGS
71 66 70 mpbird GTopGrpSSubGrpGSJBaseGSJ
72 10 71 eqeltrrd GTopGrpSSubGrpGSJJSJ
73 eqid J=J
74 73 iscld JTopSClsdJSJJSJ
75 68 74 syl GTopGrpSSubGrpGSJSClsdJSJJSJ
76 9 72 75 mpbir2and GTopGrpSSubGrpGSJSClsdJ