Metamath Proof Explorer


Theorem opnsubg

Description: An open subgroup of a topological group is also closed. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypothesis subgntr.h J = TopOpen G
Assertion opnsubg G TopGrp S SubGrp G S J S Clsd J

Proof

Step Hyp Ref Expression
1 subgntr.h J = TopOpen G
2 eqid Base G = Base G
3 2 subgss S SubGrp G S Base G
4 3 3ad2ant2 G TopGrp S SubGrp G S J S Base G
5 1 2 tgptopon G TopGrp J TopOn Base G
6 5 3ad2ant1 G TopGrp S SubGrp G S J J TopOn Base G
7 toponuni J TopOn Base G Base G = J
8 6 7 syl G TopGrp S SubGrp G S J Base G = J
9 4 8 sseqtrd G TopGrp S SubGrp G S J S J
10 8 difeq1d G TopGrp S SubGrp G S J Base G S = J S
11 df-ima y Base G x + G y S = ran y Base G x + G y S
12 4 adantr G TopGrp S SubGrp G S J x Base G S S Base G
13 12 resmptd G TopGrp S SubGrp G S J x Base G S y Base G x + G y S = y S x + G y
14 13 rneqd G TopGrp S SubGrp G S J x Base G S ran y Base G x + G y S = ran y S x + G y
15 11 14 eqtrid G TopGrp S SubGrp G S J x Base G S y Base G x + G y S = ran y S x + G y
16 simpl1 G TopGrp S SubGrp G S J x Base G S G TopGrp
17 eldifi x Base G S x Base G
18 17 adantl G TopGrp S SubGrp G S J x Base G S x Base G
19 eqid y Base G x + G y = y Base G x + G y
20 eqid + G = + G
21 19 2 20 1 tgplacthmeo G TopGrp x Base G y Base G x + G y J Homeo J
22 16 18 21 syl2anc G TopGrp S SubGrp G S J x Base G S y Base G x + G y J Homeo J
23 simpl3 G TopGrp S SubGrp G S J x Base G S S J
24 hmeoima y Base G x + G y J Homeo J S J y Base G x + G y S J
25 22 23 24 syl2anc G TopGrp S SubGrp G S J x Base G S y Base G x + G y S J
26 15 25 eqeltrrd G TopGrp S SubGrp G S J x Base G S ran y S x + G y J
27 tgpgrp G TopGrp G Grp
28 16 27 syl G TopGrp S SubGrp G S J x Base G S G Grp
29 eqid 0 G = 0 G
30 2 20 29 grprid G Grp x Base G x + G 0 G = x
31 28 18 30 syl2anc G TopGrp S SubGrp G S J x Base G S x + G 0 G = x
32 simpl2 G TopGrp S SubGrp G S J x Base G S S SubGrp G
33 29 subg0cl S SubGrp G 0 G S
34 32 33 syl G TopGrp S SubGrp G S J x Base G S 0 G S
35 ovex x + G 0 G V
36 eqid y S x + G y = y S x + G y
37 oveq2 y = 0 G x + G y = x + G 0 G
38 36 37 elrnmpt1s 0 G S x + G 0 G V x + G 0 G ran y S x + G y
39 34 35 38 sylancl G TopGrp S SubGrp G S J x Base G S x + G 0 G ran y S x + G y
40 31 39 eqeltrrd G TopGrp S SubGrp G S J x Base G S x ran y S x + G y
41 28 adantr G TopGrp S SubGrp G S J x Base G S y S G Grp
42 18 adantr G TopGrp S SubGrp G S J x Base G S y S x Base G
43 12 sselda G TopGrp S SubGrp G S J x Base G S y S y Base G
44 2 20 grpcl G Grp x Base G y Base G x + G y Base G
45 41 42 43 44 syl3anc G TopGrp S SubGrp G S J x Base G S y S x + G y Base G
46 eldifn x Base G S ¬ x S
47 46 ad2antlr G TopGrp S SubGrp G S J x Base G S y S ¬ x S
48 eqid - G = - G
49 48 subgsubcl S SubGrp G x + G y S y S x + G y - G y S
50 49 3com23 S SubGrp G y S x + G y S x + G y - G y S
51 50 3expia S SubGrp G y S x + G y S x + G y - G y S
52 32 51 sylan G TopGrp S SubGrp G S J x Base G S y S x + G y S x + G y - G y S
53 2 20 48 grppncan G Grp x Base G y Base G x + G y - G y = x
54 41 42 43 53 syl3anc G TopGrp S SubGrp G S J x Base G S y S x + G y - G y = x
55 54 eleq1d G TopGrp S SubGrp G S J x Base G S y S x + G y - G y S x S
56 52 55 sylibd G TopGrp S SubGrp G S J x Base G S y S x + G y S x S
57 47 56 mtod G TopGrp S SubGrp G S J x Base G S y S ¬ x + G y S
58 45 57 eldifd G TopGrp S SubGrp G S J x Base G S y S x + G y Base G S
59 58 fmpttd G TopGrp S SubGrp G S J x Base G S y S x + G y : S Base G S
60 59 frnd G TopGrp S SubGrp G S J x Base G S ran y S x + G y Base G S
61 eleq2 u = ran y S x + G y x u x ran y S x + G y
62 sseq1 u = ran y S x + G y u Base G S ran y S x + G y Base G S
63 61 62 anbi12d u = ran y S x + G y x u u Base G S x ran y S x + G y ran y S x + G y Base G S
64 63 rspcev ran y S x + G y J x ran y S x + G y ran y S x + G y Base G S u J x u u Base G S
65 26 40 60 64 syl12anc G TopGrp S SubGrp G S J x Base G S u J x u u Base G S
66 65 ralrimiva G TopGrp S SubGrp G S J x Base G S u J x u u Base G S
67 topontop J TopOn Base G J Top
68 6 67 syl G TopGrp S SubGrp G S J J Top
69 eltop2 J Top Base G S J x Base G S u J x u u Base G S
70 68 69 syl G TopGrp S SubGrp G S J Base G S J x Base G S u J x u u Base G S
71 66 70 mpbird G TopGrp S SubGrp G S J Base G S J
72 10 71 eqeltrrd G TopGrp S SubGrp G S J J S J
73 eqid J = J
74 73 iscld J Top S Clsd J S J J S J
75 68 74 syl G TopGrp S SubGrp G S J S Clsd J S J J S J
76 9 72 75 mpbir2and G TopGrp S SubGrp G S J S Clsd J