Metamath Proof Explorer


Theorem ordtypelem9

Description: Lemma for ordtype . Either the function OrdIso is an isomorphism onto all of A , or OrdIso is not a set, which by oif implies that either ran O C_ A is a proper class or dom O = On . (Contributed by Mario Carneiro, 25-Jun-2015) (Revised by AV, 28-Jul-2024)

Ref Expression
Hypotheses ordtypelem.1 F=recsG
ordtypelem.2 C=wA|jranhjRw
ordtypelem.3 G=hVιvC|uC¬uRv
ordtypelem.5 T=xOn|tAzFxzRt
ordtypelem.6 O=OrdIsoRA
ordtypelem.7 φRWeA
ordtypelem.8 φRSeA
ordtypelem9.1 φOV
Assertion ordtypelem9 φOIsomE,RdomOA

Proof

Step Hyp Ref Expression
1 ordtypelem.1 F=recsG
2 ordtypelem.2 C=wA|jranhjRw
3 ordtypelem.3 G=hVιvC|uC¬uRv
4 ordtypelem.5 T=xOn|tAzFxzRt
5 ordtypelem.6 O=OrdIsoRA
6 ordtypelem.7 φRWeA
7 ordtypelem.8 φRSeA
8 ordtypelem9.1 φOV
9 1 2 3 4 5 6 7 ordtypelem8 φOIsomE,RdomOranO
10 1 2 3 4 5 6 7 ordtypelem4 φO:TdomFA
11 10 frnd φranOA
12 1 2 3 4 5 6 7 ordtypelem2 φOrdT
13 ordirr OrdT¬TT
14 12 13 syl φ¬TT
15 1 tfr1a FunFLimdomF
16 15 simpri LimdomF
17 limord LimdomFOrddomF
18 16 17 ax-mp OrddomF
19 1 2 3 4 5 6 7 ordtypelem1 φO=FT
20 8 elexd φOV
21 19 20 eqeltrrd φFTV
22 1 tfr2b OrdTTdomFFTV
23 12 22 syl φTdomFFTV
24 21 23 mpbird φTdomF
25 ordelon OrddomFTdomFTOn
26 18 24 25 sylancr φTOn
27 imaeq2 a=TFa=FT
28 27 raleqdv a=TcFacRbcFTcRb
29 28 rexbidv a=TbAcFacRbbAcFTcRb
30 breq1 z=czRtcRt
31 30 cbvralvw zFxzRtcFxcRt
32 breq2 t=bcRtcRb
33 32 ralbidv t=bcFxcRtcFxcRb
34 31 33 bitrid t=bzFxzRtcFxcRb
35 34 cbvrexvw tAzFxzRtbAcFxcRb
36 imaeq2 x=aFx=Fa
37 36 raleqdv x=acFxcRbcFacRb
38 37 rexbidv x=abAcFxcRbbAcFacRb
39 35 38 bitrid x=atAzFxzRtbAcFacRb
40 39 cbvrabv xOn|tAzFxzRt=aOn|bAcFacRb
41 4 40 eqtri T=aOn|bAcFacRb
42 29 41 elrab2 TTTOnbAcFTcRb
43 42 baib TOnTTbAcFTcRb
44 26 43 syl φTTbAcFTcRb
45 14 44 mtbid φ¬bAcFTcRb
46 ralnex bA¬cFTcRb¬bAcFTcRb
47 45 46 sylibr φbA¬cFTcRb
48 47 r19.21bi φbA¬cFTcRb
49 19 rneqd φranO=ranFT
50 df-ima FT=ranFT
51 49 50 eqtr4di φranO=FT
52 51 adantr φbAranO=FT
53 52 raleqdv φbAcranOcRbcFTcRb
54 10 ffund φFunO
55 54 funfnd φOFndomO
56 55 adantr φbAOFndomO
57 breq1 c=OmcRbOmRb
58 57 ralrn OFndomOcranOcRbmdomOOmRb
59 56 58 syl φbAcranOcRbmdomOOmRb
60 53 59 bitr3d φbAcFTcRbmdomOOmRb
61 48 60 mtbid φbA¬mdomOOmRb
62 rexnal mdomO¬OmRb¬mdomOOmRb
63 61 62 sylibr φbAmdomO¬OmRb
64 1 2 3 4 5 6 7 ordtypelem7 φbAmdomOOmRbbranO
65 64 ord φbAmdomO¬OmRbbranO
66 65 rexlimdva φbAmdomO¬OmRbbranO
67 63 66 mpd φbAbranO
68 11 67 eqelssd φranO=A
69 isoeq5 ranO=AOIsomE,RdomOranOOIsomE,RdomOA
70 68 69 syl φOIsomE,RdomOranOOIsomE,RdomOA
71 9 70 mpbid φOIsomE,RdomOA