Metamath Proof Explorer


Theorem ordtypelem9

Description: Lemma for ordtype . Either the function OrdIso is an isomorphism onto all of A , or OrdIso is not a set, which by oif implies that either ran O C_ A is a proper class or dom O = On . (Contributed by Mario Carneiro, 25-Jun-2015) (Revised by AV, 28-Jul-2024)

Ref Expression
Hypotheses ordtypelem.1 F = recs G
ordtypelem.2 C = w A | j ran h j R w
ordtypelem.3 G = h V ι v C | u C ¬ u R v
ordtypelem.5 T = x On | t A z F x z R t
ordtypelem.6 O = OrdIso R A
ordtypelem.7 φ R We A
ordtypelem.8 φ R Se A
ordtypelem9.1 φ O V
Assertion ordtypelem9 φ O Isom E , R dom O A

Proof

Step Hyp Ref Expression
1 ordtypelem.1 F = recs G
2 ordtypelem.2 C = w A | j ran h j R w
3 ordtypelem.3 G = h V ι v C | u C ¬ u R v
4 ordtypelem.5 T = x On | t A z F x z R t
5 ordtypelem.6 O = OrdIso R A
6 ordtypelem.7 φ R We A
7 ordtypelem.8 φ R Se A
8 ordtypelem9.1 φ O V
9 1 2 3 4 5 6 7 ordtypelem8 φ O Isom E , R dom O ran O
10 1 2 3 4 5 6 7 ordtypelem4 φ O : T dom F A
11 10 frnd φ ran O A
12 1 2 3 4 5 6 7 ordtypelem2 φ Ord T
13 ordirr Ord T ¬ T T
14 12 13 syl φ ¬ T T
15 1 tfr1a Fun F Lim dom F
16 15 simpri Lim dom F
17 limord Lim dom F Ord dom F
18 16 17 ax-mp Ord dom F
19 1 2 3 4 5 6 7 ordtypelem1 φ O = F T
20 8 elexd φ O V
21 19 20 eqeltrrd φ F T V
22 1 tfr2b Ord T T dom F F T V
23 12 22 syl φ T dom F F T V
24 21 23 mpbird φ T dom F
25 ordelon Ord dom F T dom F T On
26 18 24 25 sylancr φ T On
27 imaeq2 a = T F a = F T
28 27 raleqdv a = T c F a c R b c F T c R b
29 28 rexbidv a = T b A c F a c R b b A c F T c R b
30 breq1 z = c z R t c R t
31 30 cbvralvw z F x z R t c F x c R t
32 breq2 t = b c R t c R b
33 32 ralbidv t = b c F x c R t c F x c R b
34 31 33 bitrid t = b z F x z R t c F x c R b
35 34 cbvrexvw t A z F x z R t b A c F x c R b
36 imaeq2 x = a F x = F a
37 36 raleqdv x = a c F x c R b c F a c R b
38 37 rexbidv x = a b A c F x c R b b A c F a c R b
39 35 38 bitrid x = a t A z F x z R t b A c F a c R b
40 39 cbvrabv x On | t A z F x z R t = a On | b A c F a c R b
41 4 40 eqtri T = a On | b A c F a c R b
42 29 41 elrab2 T T T On b A c F T c R b
43 42 baib T On T T b A c F T c R b
44 26 43 syl φ T T b A c F T c R b
45 14 44 mtbid φ ¬ b A c F T c R b
46 ralnex b A ¬ c F T c R b ¬ b A c F T c R b
47 45 46 sylibr φ b A ¬ c F T c R b
48 47 r19.21bi φ b A ¬ c F T c R b
49 19 rneqd φ ran O = ran F T
50 df-ima F T = ran F T
51 49 50 eqtr4di φ ran O = F T
52 51 adantr φ b A ran O = F T
53 52 raleqdv φ b A c ran O c R b c F T c R b
54 10 ffund φ Fun O
55 54 funfnd φ O Fn dom O
56 55 adantr φ b A O Fn dom O
57 breq1 c = O m c R b O m R b
58 57 ralrn O Fn dom O c ran O c R b m dom O O m R b
59 56 58 syl φ b A c ran O c R b m dom O O m R b
60 53 59 bitr3d φ b A c F T c R b m dom O O m R b
61 48 60 mtbid φ b A ¬ m dom O O m R b
62 rexnal m dom O ¬ O m R b ¬ m dom O O m R b
63 61 62 sylibr φ b A m dom O ¬ O m R b
64 1 2 3 4 5 6 7 ordtypelem7 φ b A m dom O O m R b b ran O
65 64 ord φ b A m dom O ¬ O m R b b ran O
66 65 rexlimdva φ b A m dom O ¬ O m R b b ran O
67 63 66 mpd φ b A b ran O
68 11 67 eqelssd φ ran O = A
69 isoeq5 ran O = A O Isom E , R dom O ran O O Isom E , R dom O A
70 68 69 syl φ O Isom E , R dom O ran O O Isom E , R dom O A
71 9 70 mpbid φ O Isom E , R dom O A