Metamath Proof Explorer


Theorem orngsqr

Description: In an ordered ring, all squares are positive. (Contributed by Thierry Arnoux, 20-Jan-2018)

Ref Expression
Hypotheses orngmul.0 B=BaseR
orngmul.1 ˙=R
orngmul.2 0˙=0R
orngmul.3 ·˙=R
Assertion orngsqr RoRingXB0˙˙X·˙X

Proof

Step Hyp Ref Expression
1 orngmul.0 B=BaseR
2 orngmul.1 ˙=R
3 orngmul.2 0˙=0R
4 orngmul.3 ·˙=R
5 simpll RoRingXB0˙˙XRoRing
6 simplr RoRingXB0˙˙XXB
7 simpr RoRingXB0˙˙X0˙˙X
8 1 2 3 4 orngmul RoRingXB0˙˙XXB0˙˙X0˙˙X·˙X
9 5 6 7 6 7 8 syl122anc RoRingXB0˙˙X0˙˙X·˙X
10 simpll RoRingXB¬0˙˙XRoRing
11 orngring RoRingRRing
12 11 ad2antrr RoRingXB¬0˙˙XRRing
13 ringgrp RRingRGrp
14 12 13 syl RoRingXB¬0˙˙XRGrp
15 simplr RoRingXB¬0˙˙XXB
16 eqid invgR=invgR
17 1 16 grpinvcl RGrpXBinvgRXB
18 14 15 17 syl2anc RoRingXB¬0˙˙XinvgRXB
19 orngogrp RoRingRoGrp
20 isogrp RoGrpRGrpRoMnd
21 20 simprbi RoGrpRoMnd
22 19 21 syl RoRingRoMnd
23 10 22 syl RoRingXB¬0˙˙XRoMnd
24 1 3 grpidcl RGrp0˙B
25 14 24 syl RoRingXB¬0˙˙X0˙B
26 simpl RoRingXBRoRing
27 11 13 24 3syl RoRing0˙B
28 26 27 syl RoRingXB0˙B
29 simpr RoRingXBXB
30 26 28 29 3jca RoRingXBRoRing0˙BXB
31 eqid <R=<R
32 2 31 pltle RoRing0˙BXB0˙<RX0˙˙X
33 32 con3dimp RoRing0˙BXB¬0˙˙X¬0˙<RX
34 30 33 sylan RoRingXB¬0˙˙X¬0˙<RX
35 omndtos RoMndRToset
36 22 35 syl RoRingRToset
37 1 2 31 tosso RTosetRToset<ROrBIB˙
38 37 ibi RToset<ROrBIB˙
39 38 simpld RToset<ROrB
40 10 36 39 3syl RoRingXB¬0˙˙X<ROrB
41 solin <ROrB0˙BXB0˙<RX0˙=XX<R0˙
42 40 25 15 41 syl12anc RoRingXB¬0˙˙X0˙<RX0˙=XX<R0˙
43 3orass 0˙<RX0˙=XX<R0˙0˙<RX0˙=XX<R0˙
44 42 43 sylib RoRingXB¬0˙˙X0˙<RX0˙=XX<R0˙
45 orel1 ¬0˙<RX0˙<RX0˙=XX<R0˙0˙=XX<R0˙
46 34 44 45 sylc RoRingXB¬0˙˙X0˙=XX<R0˙
47 orcom 0˙=XX<R0˙X<R0˙0˙=X
48 eqcom 0˙=XX=0˙
49 48 orbi2i X<R0˙0˙=XX<R0˙X=0˙
50 47 49 bitri 0˙=XX<R0˙X<R0˙X=0˙
51 46 50 sylib RoRingXB¬0˙˙XX<R0˙X=0˙
52 tospos RTosetRPoset
53 10 36 52 3syl RoRingXB¬0˙˙XRPoset
54 1 2 31 pleval2 RPosetXB0˙BX˙0˙X<R0˙X=0˙
55 53 15 25 54 syl3anc RoRingXB¬0˙˙XX˙0˙X<R0˙X=0˙
56 51 55 mpbird RoRingXB¬0˙˙XX˙0˙
57 eqid +R=+R
58 1 2 57 omndadd RoMndXB0˙BinvgRXBX˙0˙X+RinvgRX˙0˙+RinvgRX
59 23 15 25 18 56 58 syl131anc RoRingXB¬0˙˙XX+RinvgRX˙0˙+RinvgRX
60 1 57 3 16 grprinv RGrpXBX+RinvgRX=0˙
61 14 15 60 syl2anc RoRingXB¬0˙˙XX+RinvgRX=0˙
62 1 57 3 grplid RGrpinvgRXB0˙+RinvgRX=invgRX
63 14 18 62 syl2anc RoRingXB¬0˙˙X0˙+RinvgRX=invgRX
64 59 61 63 3brtr3d RoRingXB¬0˙˙X0˙˙invgRX
65 1 2 3 4 orngmul RoRinginvgRXB0˙˙invgRXinvgRXB0˙˙invgRX0˙˙invgRX·˙invgRX
66 10 18 64 18 64 65 syl122anc RoRingXB¬0˙˙X0˙˙invgRX·˙invgRX
67 1 4 16 12 15 15 ringm2neg RoRingXB¬0˙˙XinvgRX·˙invgRX=X·˙X
68 66 67 breqtrd RoRingXB¬0˙˙X0˙˙X·˙X
69 9 68 pm2.61dan RoRingXB0˙˙X·˙X