Step |
Hyp |
Ref |
Expression |
1 |
|
elpell1234qr |
|
2 |
|
simp-4r |
|
3 |
|
oveq1 |
|
4 |
3
|
eqeq2d |
|
5 |
|
oveq1 |
|
6 |
5
|
oveq1d |
|
7 |
6
|
eqeq1d |
|
8 |
4 7
|
anbi12d |
|
9 |
8
|
rexbidv |
|
10 |
9
|
rspcev |
|
11 |
10
|
adantll |
|
12 |
|
elpell14qr |
|
13 |
12
|
ad4antr |
|
14 |
2 11 13
|
mpbir2and |
|
15 |
14
|
orcd |
|
16 |
15
|
exp31 |
|
17 |
|
simp-5r |
|
18 |
17
|
renegcld |
|
19 |
|
simpllr |
|
20 |
|
znegcl |
|
21 |
20
|
ad2antlr |
|
22 |
|
simprl |
|
23 |
22
|
negeqd |
|
24 |
|
zcn |
|
25 |
24
|
ad4antlr |
|
26 |
|
eldifi |
|
27 |
26
|
nncnd |
|
28 |
27
|
ad5antr |
|
29 |
28
|
sqrtcld |
|
30 |
|
zcn |
|
31 |
30
|
ad2antlr |
|
32 |
29 31
|
mulcld |
|
33 |
25 32
|
negdid |
|
34 |
|
mulneg2 |
|
35 |
34
|
eqcomd |
|
36 |
29 31 35
|
syl2anc |
|
37 |
36
|
oveq2d |
|
38 |
23 33 37
|
3eqtrd |
|
39 |
|
sqneg |
|
40 |
25 39
|
syl |
|
41 |
|
sqneg |
|
42 |
31 41
|
syl |
|
43 |
42
|
oveq2d |
|
44 |
40 43
|
oveq12d |
|
45 |
|
simprr |
|
46 |
44 45
|
eqtrd |
|
47 |
|
oveq1 |
|
48 |
47
|
eqeq2d |
|
49 |
|
oveq1 |
|
50 |
49
|
oveq1d |
|
51 |
50
|
eqeq1d |
|
52 |
48 51
|
anbi12d |
|
53 |
|
oveq2 |
|
54 |
53
|
oveq2d |
|
55 |
54
|
eqeq2d |
|
56 |
|
oveq1 |
|
57 |
56
|
oveq2d |
|
58 |
57
|
oveq2d |
|
59 |
58
|
eqeq1d |
|
60 |
55 59
|
anbi12d |
|
61 |
52 60
|
rspc2ev |
|
62 |
19 21 38 46 61
|
syl112anc |
|
63 |
|
elpell14qr |
|
64 |
63
|
ad5antr |
|
65 |
18 62 64
|
mpbir2and |
|
66 |
65
|
olcd |
|
67 |
66
|
ex |
|
68 |
67
|
rexlimdva |
|
69 |
68
|
ex |
|
70 |
|
elznn0 |
|
71 |
70
|
simprbi |
|
72 |
71
|
adantl |
|
73 |
16 69 72
|
mpjaod |
|
74 |
73
|
rexlimdva |
|
75 |
74
|
expimpd |
|
76 |
1 75
|
sylbid |
|
77 |
76
|
imp |
|