Metamath Proof Explorer


Theorem pgpfac1lem3a

Description: Lemma for pgpfac1 . (Contributed by Mario Carneiro, 4-Jun-2016)

Ref Expression
Hypotheses pgpfac1.k K=mrClsSubGrpG
pgpfac1.s S=KA
pgpfac1.b B=BaseG
pgpfac1.o O=odG
pgpfac1.e E=gExG
pgpfac1.z 0˙=0G
pgpfac1.l ˙=LSSumG
pgpfac1.p φPpGrpG
pgpfac1.g φGAbel
pgpfac1.n φBFin
pgpfac1.oe φOA=E
pgpfac1.u φUSubGrpG
pgpfac1.au φAU
pgpfac1.w φWSubGrpG
pgpfac1.i φSW=0˙
pgpfac1.ss φS˙WU
pgpfac1.2 φwSubGrpGwUAw¬S˙Ww
pgpfac1.c φCUS˙W
pgpfac1.mg ·˙=G
pgpfac1.m φM
pgpfac1.mw φP·˙C+GM·˙AW
Assertion pgpfac1lem3a φPEPM

Proof

Step Hyp Ref Expression
1 pgpfac1.k K=mrClsSubGrpG
2 pgpfac1.s S=KA
3 pgpfac1.b B=BaseG
4 pgpfac1.o O=odG
5 pgpfac1.e E=gExG
6 pgpfac1.z 0˙=0G
7 pgpfac1.l ˙=LSSumG
8 pgpfac1.p φPpGrpG
9 pgpfac1.g φGAbel
10 pgpfac1.n φBFin
11 pgpfac1.oe φOA=E
12 pgpfac1.u φUSubGrpG
13 pgpfac1.au φAU
14 pgpfac1.w φWSubGrpG
15 pgpfac1.i φSW=0˙
16 pgpfac1.ss φS˙WU
17 pgpfac1.2 φwSubGrpGwUAw¬S˙Ww
18 pgpfac1.c φCUS˙W
19 pgpfac1.mg ·˙=G
20 pgpfac1.m φM
21 pgpfac1.mw φP·˙C+GM·˙AW
22 18 eldifbd φ¬CS˙W
23 pgpprm PpGrpGP
24 8 23 syl φP
25 ablgrp GAbelGGrp
26 9 25 syl φGGrp
27 3 5 gexcl2 GGrpBFinE
28 26 10 27 syl2anc φE
29 pceq0 PEPpCntE=0¬PE
30 24 28 29 syl2anc φPpCntE=0¬PE
31 oveq2 PpCntE=0PPpCntE=P0
32 30 31 syl6bir φ¬PEPPpCntE=P0
33 3 grpbn0 GGrpB
34 26 33 syl φB
35 hashnncl BFinBB
36 10 35 syl φBB
37 34 36 mpbird φB
38 24 37 pccld φPpCntB0
39 3 5 gexdvds3 GGrpBFinEB
40 26 10 39 syl2anc φEB
41 3 pgphash PpGrpGBFinB=PPpCntB
42 8 10 41 syl2anc φB=PPpCntB
43 40 42 breqtrd φEPPpCntB
44 oveq2 k=PpCntBPk=PPpCntB
45 44 breq2d k=PpCntBEPkEPPpCntB
46 45 rspcev PpCntB0EPPpCntBk0EPk
47 38 43 46 syl2anc φk0EPk
48 pcprmpw2 PEk0EPkE=PPpCntE
49 24 28 48 syl2anc φk0EPkE=PPpCntE
50 47 49 mpbid φE=PPpCntE
51 50 eqcomd φPPpCntE=E
52 prmnn PP
53 24 52 syl φP
54 53 nncnd φP
55 54 exp0d φP0=1
56 51 55 eqeq12d φPPpCntE=P0E=1
57 26 grpmndd φGMnd
58 3 5 gex1 GMndE=1B1𝑜
59 57 58 syl φE=1B1𝑜
60 56 59 bitrd φPPpCntE=P0B1𝑜
61 32 60 sylibd φ¬PEB1𝑜
62 3 subgacs GGrpSubGrpGACSB
63 26 62 syl φSubGrpGACSB
64 63 acsmred φSubGrpGMooreB
65 3 subgss USubGrpGUB
66 12 65 syl φUB
67 66 13 sseldd φAB
68 1 mrcsncl SubGrpGMooreBABKASubGrpG
69 64 67 68 syl2anc φKASubGrpG
70 2 69 eqeltrid φSSubGrpG
71 7 lsmsubg2 GAbelSSubGrpGWSubGrpGS˙WSubGrpG
72 9 70 14 71 syl3anc φS˙WSubGrpG
73 6 subg0cl S˙WSubGrpG0˙S˙W
74 72 73 syl φ0˙S˙W
75 74 snssd φ0˙S˙W
76 75 adantr φB1𝑜0˙S˙W
77 18 eldifad φCU
78 66 77 sseldd φCB
79 78 adantr φB1𝑜CB
80 3 6 grpidcl GGrp0˙B
81 26 80 syl φ0˙B
82 en1eqsn 0˙BB1𝑜B=0˙
83 81 82 sylan φB1𝑜B=0˙
84 79 83 eleqtrd φB1𝑜C0˙
85 76 84 sseldd φB1𝑜CS˙W
86 85 ex φB1𝑜CS˙W
87 61 86 syld φ¬PECS˙W
88 22 87 mt3d φPE
89 28 nncnd φE
90 53 nnne0d φP0
91 89 54 90 divcan1d φEPP=E
92 11 91 eqtr4d φOA=EPP
93 nndivdvds EPPEEP
94 28 53 93 syl2anc φPEEP
95 88 94 mpbid φEP
96 95 nnzd φEP
97 96 20 zmulcld φEP M
98 67 snssd φAB
99 64 1 98 mrcssidd φAKA
100 99 2 sseqtrrdi φAS
101 snssg AUASAS
102 13 101 syl φASAS
103 100 102 mpbird φAS
104 19 subgmulgcl SSubGrpGEP MASEP M·˙AS
105 70 97 103 104 syl3anc φEP M·˙AS
106 prmz PP
107 24 106 syl φP
108 3 19 mulgcl GGrpPCBP·˙CB
109 26 107 78 108 syl3anc φP·˙CB
110 3 19 mulgcl GGrpMABM·˙AB
111 26 20 67 110 syl3anc φM·˙AB
112 eqid +G=+G
113 3 19 112 mulgdi GAbelEPP·˙CBM·˙ABEP·˙P·˙C+GM·˙A=EP·˙P·˙C+GEP·˙M·˙A
114 9 96 109 111 113 syl13anc φEP·˙P·˙C+GM·˙A=EP·˙P·˙C+GEP·˙M·˙A
115 91 oveq1d φEPP·˙C=E·˙C
116 3 19 mulgass GGrpEPPCBEPP·˙C=EP·˙P·˙C
117 26 96 107 78 116 syl13anc φEPP·˙C=EP·˙P·˙C
118 3 5 19 6 gexid CBE·˙C=0˙
119 78 118 syl φE·˙C=0˙
120 115 117 119 3eqtr3rd φ0˙=EP·˙P·˙C
121 3 19 mulgass GGrpEPMABEP M·˙A=EP·˙M·˙A
122 26 96 20 67 121 syl13anc φEP M·˙A=EP·˙M·˙A
123 120 122 oveq12d φ0˙+GEP M·˙A=EP·˙P·˙C+GEP·˙M·˙A
124 3 subgss SSubGrpGSB
125 70 124 syl φSB
126 125 105 sseldd φEP M·˙AB
127 3 112 6 grplid GGrpEP M·˙AB0˙+GEP M·˙A=EP M·˙A
128 26 126 127 syl2anc φ0˙+GEP M·˙A=EP M·˙A
129 114 123 128 3eqtr2d φEP·˙P·˙C+GM·˙A=EP M·˙A
130 19 subgmulgcl WSubGrpGEPP·˙C+GM·˙AWEP·˙P·˙C+GM·˙AW
131 14 96 21 130 syl3anc φEP·˙P·˙C+GM·˙AW
132 129 131 eqeltrrd φEP M·˙AW
133 105 132 elind φEP M·˙ASW
134 133 15 eleqtrd φEP M·˙A0˙
135 elsni EP M·˙A0˙EP M·˙A=0˙
136 134 135 syl φEP M·˙A=0˙
137 3 4 19 6 oddvds GGrpABEP MOAEP MEP M·˙A=0˙
138 26 67 97 137 syl3anc φOAEP MEP M·˙A=0˙
139 136 138 mpbird φOAEP M
140 92 139 eqbrtrrd φEPPEP M
141 95 nnne0d φEP0
142 dvdscmulr PMEPEP0EPPEP MPM
143 107 20 96 141 142 syl112anc φEPPEP MPM
144 140 143 mpbid φPM
145 88 144 jca φPEPM