Description: The divisor sum identity of the totient function. Theorem 2.2 in ApostolNT p. 26. (Contributed by Stefan O'Rear, 12-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | phisum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 | |
|
2 | 1 | elrab | |
3 | hashgcdeq | |
|
4 | 3 | adantrr | |
5 | iftrue | |
|
6 | 5 | ad2antll | |
7 | 4 6 | eqtrd | |
8 | 2 7 | sylan2b | |
9 | 8 | sumeq2dv | |
10 | fzfi | |
|
11 | dvdsssfz1 | |
|
12 | ssfi | |
|
13 | 10 11 12 | sylancr | |
14 | fzofi | |
|
15 | ssrab2 | |
|
16 | ssfi | |
|
17 | 14 15 16 | mp2an | |
18 | 17 | a1i | |
19 | oveq1 | |
|
20 | 19 | eqeq1d | |
21 | 20 | elrab | |
22 | 21 | simprbi | |
23 | 22 | rgen | |
24 | 23 | rgenw | |
25 | invdisj | |
|
26 | 24 25 | mp1i | |
27 | 13 18 26 | hashiun | |
28 | fveq2 | |
|
29 | eqid | |
|
30 | eqid | |
|
31 | 29 30 | dvdsflip | |
32 | oveq2 | |
|
33 | ovex | |
|
34 | 32 30 33 | fvmpt | |
35 | 34 | adantl | |
36 | elrabi | |
|
37 | 36 | adantl | |
38 | 37 | phicld | |
39 | 38 | nncnd | |
40 | 28 13 31 35 39 | fsumf1o | |
41 | 9 27 40 | 3eqtr4rd | |
42 | iunrab | |
|
43 | breq1 | |
|
44 | elfzoelz | |
|
45 | 44 | adantl | |
46 | nnz | |
|
47 | 46 | adantr | |
48 | nnne0 | |
|
49 | 48 | neneqd | |
50 | 49 | intnand | |
51 | 50 | adantr | |
52 | gcdn0cl | |
|
53 | 45 47 51 52 | syl21anc | |
54 | gcddvds | |
|
55 | 45 47 54 | syl2anc | |
56 | 55 | simprd | |
57 | 43 53 56 | elrabd | |
58 | clel5 | |
|
59 | 57 58 | sylib | |
60 | 59 | ralrimiva | |
61 | rabid2 | |
|
62 | 60 61 | sylibr | |
63 | 42 62 | eqtr4id | |
64 | 63 | fveq2d | |
65 | nnnn0 | |
|
66 | hashfzo0 | |
|
67 | 65 66 | syl | |
68 | 64 67 | eqtrd | |
69 | 41 68 | eqtrd | |