Metamath Proof Explorer


Theorem phisum

Description: The divisor sum identity of the totient function. Theorem 2.2 in ApostolNT p. 26. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Assertion phisum Ndx|xNϕd=N

Proof

Step Hyp Ref Expression
1 breq1 x=yxNyN
2 1 elrab yx|xNyyN
3 hashgcdeq Nyz0..^N|zgcdN=y=ifyNϕNy0
4 3 adantrr NyyNz0..^N|zgcdN=y=ifyNϕNy0
5 iftrue yNifyNϕNy0=ϕNy
6 5 ad2antll NyyNifyNϕNy0=ϕNy
7 4 6 eqtrd NyyNz0..^N|zgcdN=y=ϕNy
8 2 7 sylan2b Nyx|xNz0..^N|zgcdN=y=ϕNy
9 8 sumeq2dv Nyx|xNz0..^N|zgcdN=y=yx|xNϕNy
10 fzfi 1NFin
11 dvdsssfz1 Nx|xN1N
12 ssfi 1NFinx|xN1Nx|xNFin
13 10 11 12 sylancr Nx|xNFin
14 fzofi 0..^NFin
15 ssrab2 z0..^N|zgcdN=y0..^N
16 ssfi 0..^NFinz0..^N|zgcdN=y0..^Nz0..^N|zgcdN=yFin
17 14 15 16 mp2an z0..^N|zgcdN=yFin
18 17 a1i Nyx|xNz0..^N|zgcdN=yFin
19 oveq1 z=wzgcdN=wgcdN
20 19 eqeq1d z=wzgcdN=ywgcdN=y
21 20 elrab wz0..^N|zgcdN=yw0..^NwgcdN=y
22 21 simprbi wz0..^N|zgcdN=ywgcdN=y
23 22 rgen wz0..^N|zgcdN=ywgcdN=y
24 23 rgenw yx|xNwz0..^N|zgcdN=ywgcdN=y
25 invdisj yx|xNwz0..^N|zgcdN=ywgcdN=yDisjyx|xNz0..^N|zgcdN=y
26 24 25 mp1i NDisjyx|xNz0..^N|zgcdN=y
27 13 18 26 hashiun Nyx|xNz0..^N|zgcdN=y=yx|xNz0..^N|zgcdN=y
28 fveq2 d=Nyϕd=ϕNy
29 eqid x|xN=x|xN
30 eqid zx|xNNz=zx|xNNz
31 29 30 dvdsflip Nzx|xNNz:x|xN1-1 ontox|xN
32 oveq2 z=yNz=Ny
33 ovex NyV
34 32 30 33 fvmpt yx|xNzx|xNNzy=Ny
35 34 adantl Nyx|xNzx|xNNzy=Ny
36 elrabi dx|xNd
37 36 adantl Ndx|xNd
38 37 phicld Ndx|xNϕd
39 38 nncnd Ndx|xNϕd
40 28 13 31 35 39 fsumf1o Ndx|xNϕd=yx|xNϕNy
41 9 27 40 3eqtr4rd Ndx|xNϕd=yx|xNz0..^N|zgcdN=y
42 iunrab yx|xNz0..^N|zgcdN=y=z0..^N|yx|xNzgcdN=y
43 breq1 x=zgcdNxNzgcdNN
44 elfzoelz z0..^Nz
45 44 adantl Nz0..^Nz
46 nnz NN
47 46 adantr Nz0..^NN
48 nnne0 NN0
49 48 neneqd N¬N=0
50 49 intnand N¬z=0N=0
51 50 adantr Nz0..^N¬z=0N=0
52 gcdn0cl zN¬z=0N=0zgcdN
53 45 47 51 52 syl21anc Nz0..^NzgcdN
54 gcddvds zNzgcdNzzgcdNN
55 45 47 54 syl2anc Nz0..^NzgcdNzzgcdNN
56 55 simprd Nz0..^NzgcdNN
57 43 53 56 elrabd Nz0..^NzgcdNx|xN
58 clel5 zgcdNx|xNyx|xNzgcdN=y
59 57 58 sylib Nz0..^Nyx|xNzgcdN=y
60 59 ralrimiva Nz0..^Nyx|xNzgcdN=y
61 rabid2 0..^N=z0..^N|yx|xNzgcdN=yz0..^Nyx|xNzgcdN=y
62 60 61 sylibr N0..^N=z0..^N|yx|xNzgcdN=y
63 42 62 eqtr4id Nyx|xNz0..^N|zgcdN=y=0..^N
64 63 fveq2d Nyx|xNz0..^N|zgcdN=y=0..^N
65 nnnn0 NN0
66 hashfzo0 N00..^N=N
67 65 66 syl N0..^N=N
68 64 67 eqtrd Nyx|xNz0..^N|zgcdN=y=N
69 41 68 eqtrd Ndx|xNϕd=N