Step |
Hyp |
Ref |
Expression |
1 |
|
pjclem1.1 |
|
2 |
|
pjclem1.2 |
|
3 |
1 2
|
pjcocli |
|
4 |
3
|
adantl |
|
5 |
2 1
|
pjcocli |
|
6 |
|
fveq1 |
|
7 |
6
|
eleq1d |
|
8 |
5 7
|
syl5ibr |
|
9 |
8
|
imp |
|
10 |
4 9
|
elind |
|
11 |
1 2
|
pjcohcli |
|
12 |
|
hvsubcl |
|
13 |
11 12
|
mpdan |
|
14 |
13
|
adantl |
|
15 |
|
simpl |
|
16 |
11
|
adantr |
|
17 |
1 2
|
chincli |
|
18 |
17
|
cheli |
|
19 |
18
|
adantl |
|
20 |
15 16 19
|
3jca |
|
21 |
20
|
adantl |
|
22 |
|
his2sub |
|
23 |
21 22
|
syl |
|
24 |
6
|
oveq1d |
|
25 |
2 1
|
pjadjcoi |
|
26 |
18 25
|
sylan2 |
|
27 |
1 2
|
pjclem4a |
|
28 |
27
|
oveq2d |
|
29 |
28
|
adantl |
|
30 |
26 29
|
eqtrd |
|
31 |
24 30
|
sylan9eq |
|
32 |
31
|
oveq1d |
|
33 |
11 18
|
anim12i |
|
34 |
33
|
adantl |
|
35 |
|
hicl |
|
36 |
34 35
|
syl |
|
37 |
36
|
subidd |
|
38 |
23 32 37
|
3eqtr2d |
|
39 |
38
|
expr |
|
40 |
39
|
ralrimiv |
|
41 |
17
|
chshii |
|
42 |
|
shocel |
|
43 |
41 42
|
ax-mp |
|
44 |
14 40 43
|
sylanbrc |
|
45 |
17
|
pjvi |
|
46 |
10 44 45
|
syl2anc |
|
47 |
|
id |
|
48 |
|
hvaddsub12 |
|
49 |
11 47 11 48
|
syl3anc |
|
50 |
|
hvsubid |
|
51 |
11 50
|
syl |
|
52 |
51
|
oveq2d |
|
53 |
|
ax-hvaddid |
|
54 |
49 52 53
|
3eqtrd |
|
55 |
54
|
fveq2d |
|
56 |
55
|
adantl |
|
57 |
46 56
|
eqtr3d |
|
58 |
57
|
ralrimiva |
|
59 |
1
|
pjfi |
|
60 |
2
|
pjfi |
|
61 |
59 60
|
hocofi |
|
62 |
17
|
pjfi |
|
63 |
61 62
|
hoeqi |
|
64 |
58 63
|
sylib |
|