Description: Characterize elementhood in the set S of polynomials of degree less than N . (Contributed by Thierry Arnoux, 2-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ply1degltlss.p | |
|
ply1degltlss.d | |
||
ply1degltlss.1 | |
||
ply1degltlss.3 | |
||
ply1degltlss.2 | |
||
ply1degltel.1 | |
||
Assertion | ply1degleel | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1degltlss.p | |
|
2 | ply1degltlss.d | |
|
3 | ply1degltlss.1 | |
|
4 | ply1degltlss.3 | |
|
5 | ply1degltlss.2 | |
|
6 | ply1degltel.1 | |
|
7 | simpr | |
|
8 | 2 1 6 | deg1xrf | |
9 | 8 | a1i | |
10 | 9 | ffnd | |
11 | 1 | ply1ring | |
12 | eqid | |
|
13 | 6 12 | ring0cl | |
14 | 5 11 13 | 3syl | |
15 | 2 1 12 | deg1z | |
16 | 5 15 | syl | |
17 | mnfxr | |
|
18 | 17 | a1i | |
19 | 4 | nn0red | |
20 | 19 | rexrd | |
21 | 18 | xrleidd | |
22 | 19 | mnfltd | |
23 | 18 20 18 21 22 | elicod | |
24 | 16 23 | eqeltrd | |
25 | 10 14 24 | elpreimad | |
26 | 25 3 | eleqtrrdi | |
27 | 26 | adantr | |
28 | 7 27 | eqeltrd | |
29 | cnvimass | |
|
30 | 3 29 | eqsstri | |
31 | 8 | fdmi | |
32 | 30 31 | sseqtri | |
33 | 32 28 | sselid | |
34 | 7 | fveq2d | |
35 | 16 | adantr | |
36 | 34 35 | eqtrd | |
37 | 19 | adantr | |
38 | 37 | mnfltd | |
39 | 36 38 | eqbrtrd | |
40 | pm5.1 | |
|
41 | 28 33 39 40 | syl12anc | |
42 | 3 | eleq2i | |
43 | 10 | adantr | |
44 | elpreima | |
|
45 | 43 44 | syl | |
46 | 42 45 | bitrid | |
47 | 5 | ad2antrr | |
48 | simpr | |
|
49 | simplr | |
|
50 | 2 1 12 6 | deg1nn0cl | |
51 | 47 48 49 50 | syl3anc | |
52 | 51 | nn0red | |
53 | 52 | rexrd | |
54 | 53 | mnfled | |
55 | 53 54 | jca | |
56 | 20 | ad2antrr | |
57 | elico1 | |
|
58 | 17 56 57 | sylancr | |
59 | df-3an | |
|
60 | 58 59 | bitrdi | |
61 | 55 60 | mpbirand | |
62 | 61 | pm5.32da | |
63 | 46 62 | bitrd | |
64 | 41 63 | pm2.61dane | |