Metamath Proof Explorer


Theorem ply1degleel

Description: Characterize elementhood in the set S of polynomials of degree less than N . (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses ply1degltlss.p P=Poly1R
ply1degltlss.d D=deg1R
ply1degltlss.1 S=D-1−∞N
ply1degltlss.3 φN0
ply1degltlss.2 φRRing
ply1degltel.1 B=BaseP
Assertion ply1degleel φFSFBDF<N

Proof

Step Hyp Ref Expression
1 ply1degltlss.p P=Poly1R
2 ply1degltlss.d D=deg1R
3 ply1degltlss.1 S=D-1−∞N
4 ply1degltlss.3 φN0
5 ply1degltlss.2 φRRing
6 ply1degltel.1 B=BaseP
7 simpr φF=0PF=0P
8 2 1 6 deg1xrf D:B*
9 8 a1i φD:B*
10 9 ffnd φDFnB
11 1 ply1ring RRingPRing
12 eqid 0P=0P
13 6 12 ring0cl PRing0PB
14 5 11 13 3syl φ0PB
15 2 1 12 deg1z RRingD0P=−∞
16 5 15 syl φD0P=−∞
17 mnfxr −∞*
18 17 a1i φ−∞*
19 4 nn0red φN
20 19 rexrd φN*
21 18 xrleidd φ−∞−∞
22 19 mnfltd φ−∞<N
23 18 20 18 21 22 elicod φ−∞−∞N
24 16 23 eqeltrd φD0P−∞N
25 10 14 24 elpreimad φ0PD-1−∞N
26 25 3 eleqtrrdi φ0PS
27 26 adantr φF=0P0PS
28 7 27 eqeltrd φF=0PFS
29 cnvimass D-1−∞NdomD
30 3 29 eqsstri SdomD
31 8 fdmi domD=B
32 30 31 sseqtri SB
33 32 28 sselid φF=0PFB
34 7 fveq2d φF=0PDF=D0P
35 16 adantr φF=0PD0P=−∞
36 34 35 eqtrd φF=0PDF=−∞
37 19 adantr φF=0PN
38 37 mnfltd φF=0P−∞<N
39 36 38 eqbrtrd φF=0PDF<N
40 pm5.1 FSFBDF<NFSFBDF<N
41 28 33 39 40 syl12anc φF=0PFSFBDF<N
42 3 eleq2i FSFD-1−∞N
43 10 adantr φF0PDFnB
44 elpreima DFnBFD-1−∞NFBDF−∞N
45 43 44 syl φF0PFD-1−∞NFBDF−∞N
46 42 45 bitrid φF0PFSFBDF−∞N
47 5 ad2antrr φF0PFBRRing
48 simpr φF0PFBFB
49 simplr φF0PFBF0P
50 2 1 12 6 deg1nn0cl RRingFBF0PDF0
51 47 48 49 50 syl3anc φF0PFBDF0
52 51 nn0red φF0PFBDF
53 52 rexrd φF0PFBDF*
54 53 mnfled φF0PFB−∞DF
55 53 54 jca φF0PFBDF*−∞DF
56 20 ad2antrr φF0PFBN*
57 elico1 −∞*N*DF−∞NDF*−∞DFDF<N
58 17 56 57 sylancr φF0PFBDF−∞NDF*−∞DFDF<N
59 df-3an DF*−∞DFDF<NDF*−∞DFDF<N
60 58 59 bitrdi φF0PFBDF−∞NDF*−∞DFDF<N
61 55 60 mpbirand φF0PFBDF−∞NDF<N
62 61 pm5.32da φF0PFBDF−∞NFBDF<N
63 46 62 bitrd φF0PFSFBDF<N
64 41 63 pm2.61dane φFSFBDF<N