Description: Lemma for plycj and coecj . (Contributed by Mario Carneiro, 24-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | plycj.1 | |
|
plycj.2 | |
||
plycjlem.3 | |
||
Assertion | plycjlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plycj.1 | |
|
2 | plycj.2 | |
|
3 | plycjlem.3 | |
|
4 | cjcl | |
|
5 | 4 | adantl | |
6 | cjf | |
|
7 | 6 | a1i | |
8 | 7 | feqmptd | |
9 | fzfid | |
|
10 | 3 | coef3 | |
11 | 10 | adantr | |
12 | elfznn0 | |
|
13 | ffvelcdm | |
|
14 | 11 12 13 | syl2an | |
15 | expcl | |
|
16 | 12 15 | sylan2 | |
17 | 16 | adantll | |
18 | 14 17 | mulcld | |
19 | 9 18 | fsumcl | |
20 | 3 1 | coeid | |
21 | fveq2 | |
|
22 | 19 20 8 21 | fmptco | |
23 | oveq1 | |
|
24 | 23 | oveq2d | |
25 | 24 | sumeq2sdv | |
26 | 25 | fveq2d | |
27 | 5 8 22 26 | fmptco | |
28 | 2 27 | eqtrid | |
29 | fzfid | |
|
30 | 10 | adantr | |
31 | 30 12 13 | syl2an | |
32 | expcl | |
|
33 | 5 12 32 | syl2an | |
34 | 31 33 | mulcld | |
35 | 29 34 | fsumcj | |
36 | 31 33 | cjmuld | |
37 | fvco3 | |
|
38 | 30 12 37 | syl2an | |
39 | cjexp | |
|
40 | 5 12 39 | syl2an | |
41 | cjcj | |
|
42 | 41 | ad2antlr | |
43 | 42 | oveq1d | |
44 | 40 43 | eqtr2d | |
45 | 38 44 | oveq12d | |
46 | 36 45 | eqtr4d | |
47 | 46 | sumeq2dv | |
48 | 35 47 | eqtrd | |
49 | 48 | mpteq2dva | |
50 | 28 49 | eqtrd | |