Step |
Hyp |
Ref |
Expression |
1 |
|
plycj.1 |
|
2 |
|
plycj.2 |
|
3 |
|
plycjlem.3 |
|
4 |
|
cjcl |
|
5 |
4
|
adantl |
|
6 |
|
cjf |
|
7 |
6
|
a1i |
|
8 |
7
|
feqmptd |
|
9 |
|
fzfid |
|
10 |
3
|
coef3 |
|
11 |
10
|
adantr |
|
12 |
|
elfznn0 |
|
13 |
|
ffvelrn |
|
14 |
11 12 13
|
syl2an |
|
15 |
|
expcl |
|
16 |
12 15
|
sylan2 |
|
17 |
16
|
adantll |
|
18 |
14 17
|
mulcld |
|
19 |
9 18
|
fsumcl |
|
20 |
3 1
|
coeid |
|
21 |
|
fveq2 |
|
22 |
19 20 8 21
|
fmptco |
|
23 |
|
oveq1 |
|
24 |
23
|
oveq2d |
|
25 |
24
|
sumeq2sdv |
|
26 |
25
|
fveq2d |
|
27 |
5 8 22 26
|
fmptco |
|
28 |
2 27
|
eqtrid |
|
29 |
|
fzfid |
|
30 |
10
|
adantr |
|
31 |
30 12 13
|
syl2an |
|
32 |
|
expcl |
|
33 |
5 12 32
|
syl2an |
|
34 |
31 33
|
mulcld |
|
35 |
29 34
|
fsumcj |
|
36 |
31 33
|
cjmuld |
|
37 |
|
fvco3 |
|
38 |
30 12 37
|
syl2an |
|
39 |
|
cjexp |
|
40 |
5 12 39
|
syl2an |
|
41 |
|
cjcj |
|
42 |
41
|
ad2antlr |
|
43 |
42
|
oveq1d |
|
44 |
40 43
|
eqtr2d |
|
45 |
38 44
|
oveq12d |
|
46 |
36 45
|
eqtr4d |
|
47 |
46
|
sumeq2dv |
|
48 |
35 47
|
eqtrd |
|
49 |
48
|
mpteq2dva |
|
50 |
28 49
|
eqtrd |
|