Metamath Proof Explorer


Theorem pmatcollpw1

Description: Write a polynomial matrix as a matrix of sums of scaled monomials. (Contributed by AV, 29-Sep-2019) (Revised by AV, 3-Dec-2019)

Ref Expression
Hypotheses pmatcollpw1.p P = Poly 1 R
pmatcollpw1.c C = N Mat P
pmatcollpw1.b B = Base C
pmatcollpw1.m × ˙ = P
pmatcollpw1.e × ˙ = mulGrp P
pmatcollpw1.x X = var 1 R
Assertion pmatcollpw1 N Fin R Ring M B M = i N , j N P n 0 i M decompPMat n j × ˙ n × ˙ X

Proof

Step Hyp Ref Expression
1 pmatcollpw1.p P = Poly 1 R
2 pmatcollpw1.c C = N Mat P
3 pmatcollpw1.b B = Base C
4 pmatcollpw1.m × ˙ = P
5 pmatcollpw1.e × ˙ = mulGrp P
6 pmatcollpw1.x X = var 1 R
7 1 2 3 4 5 6 pmatcollpw1lem2 N Fin R Ring M B a N b N a M b = P n 0 a M decompPMat n b × ˙ n × ˙ X
8 eqidd N Fin R Ring M B a N b N i N , j N P n 0 i M decompPMat n j × ˙ n × ˙ X = i N , j N P n 0 i M decompPMat n j × ˙ n × ˙ X
9 oveq12 i = a j = b i M decompPMat n j = a M decompPMat n b
10 9 oveq1d i = a j = b i M decompPMat n j × ˙ n × ˙ X = a M decompPMat n b × ˙ n × ˙ X
11 10 mpteq2dv i = a j = b n 0 i M decompPMat n j × ˙ n × ˙ X = n 0 a M decompPMat n b × ˙ n × ˙ X
12 11 oveq2d i = a j = b P n 0 i M decompPMat n j × ˙ n × ˙ X = P n 0 a M decompPMat n b × ˙ n × ˙ X
13 12 adantl N Fin R Ring M B a N b N i = a j = b P n 0 i M decompPMat n j × ˙ n × ˙ X = P n 0 a M decompPMat n b × ˙ n × ˙ X
14 simprl N Fin R Ring M B a N b N a N
15 simprr N Fin R Ring M B a N b N b N
16 eqid Base P = Base P
17 eqid 0 P = 0 P
18 1 ply1ring R Ring P Ring
19 ringcmn P Ring P CMnd
20 18 19 syl R Ring P CMnd
21 20 3ad2ant2 N Fin R Ring M B P CMnd
22 21 adantr N Fin R Ring M B a N b N P CMnd
23 nn0ex 0 V
24 23 a1i N Fin R Ring M B a N b N 0 V
25 simpl2 N Fin R Ring M B a N b N R Ring
26 25 adantr N Fin R Ring M B a N b N n 0 R Ring
27 eqid N Mat R = N Mat R
28 eqid Base R = Base R
29 eqid Base N Mat R = Base N Mat R
30 simplrl N Fin R Ring M B a N b N n 0 a N
31 15 adantr N Fin R Ring M B a N b N n 0 b N
32 simpl3 N Fin R Ring M B a N b N M B
33 32 adantr N Fin R Ring M B a N b N n 0 M B
34 simpr N Fin R Ring M B a N b N n 0 n 0
35 1 2 3 27 29 decpmatcl R Ring M B n 0 M decompPMat n Base N Mat R
36 26 33 34 35 syl3anc N Fin R Ring M B a N b N n 0 M decompPMat n Base N Mat R
37 27 28 29 30 31 36 matecld N Fin R Ring M B a N b N n 0 a M decompPMat n b Base R
38 eqid mulGrp P = mulGrp P
39 28 1 6 4 38 5 16 ply1tmcl R Ring a M decompPMat n b Base R n 0 a M decompPMat n b × ˙ n × ˙ X Base P
40 26 37 34 39 syl3anc N Fin R Ring M B a N b N n 0 a M decompPMat n b × ˙ n × ˙ X Base P
41 40 fmpttd N Fin R Ring M B a N b N n 0 a M decompPMat n b × ˙ n × ˙ X : 0 Base P
42 1 2 3 4 5 6 pmatcollpw1lem1 N Fin R Ring M B a N b N finSupp 0 P n 0 a M decompPMat n b × ˙ n × ˙ X
43 42 3expb N Fin R Ring M B a N b N finSupp 0 P n 0 a M decompPMat n b × ˙ n × ˙ X
44 16 17 22 24 41 43 gsumcl N Fin R Ring M B a N b N P n 0 a M decompPMat n b × ˙ n × ˙ X Base P
45 8 13 14 15 44 ovmpod N Fin R Ring M B a N b N a i N , j N P n 0 i M decompPMat n j × ˙ n × ˙ X b = P n 0 a M decompPMat n b × ˙ n × ˙ X
46 7 45 eqtr4d N Fin R Ring M B a N b N a M b = a i N , j N P n 0 i M decompPMat n j × ˙ n × ˙ X b
47 46 ralrimivva N Fin R Ring M B a N b N a M b = a i N , j N P n 0 i M decompPMat n j × ˙ n × ˙ X b
48 simp3 N Fin R Ring M B M B
49 simp1 N Fin R Ring M B N Fin
50 18 3ad2ant2 N Fin R Ring M B P Ring
51 21 3ad2ant1 N Fin R Ring M B i N j N P CMnd
52 23 a1i N Fin R Ring M B i N j N 0 V
53 simpl12 N Fin R Ring M B i N j N n 0 R Ring
54 simpl2 N Fin R Ring M B i N j N n 0 i N
55 simpl3 N Fin R Ring M B i N j N n 0 j N
56 48 3ad2ant1 N Fin R Ring M B i N j N M B
57 56 adantr N Fin R Ring M B i N j N n 0 M B
58 simpr N Fin R Ring M B i N j N n 0 n 0
59 53 57 58 35 syl3anc N Fin R Ring M B i N j N n 0 M decompPMat n Base N Mat R
60 27 28 29 54 55 59 matecld N Fin R Ring M B i N j N n 0 i M decompPMat n j Base R
61 28 1 6 4 38 5 16 ply1tmcl R Ring i M decompPMat n j Base R n 0 i M decompPMat n j × ˙ n × ˙ X Base P
62 53 60 58 61 syl3anc N Fin R Ring M B i N j N n 0 i M decompPMat n j × ˙ n × ˙ X Base P
63 62 fmpttd N Fin R Ring M B i N j N n 0 i M decompPMat n j × ˙ n × ˙ X : 0 Base P
64 1 2 3 4 5 6 pmatcollpw1lem1 N Fin R Ring M B i N j N finSupp 0 P n 0 i M decompPMat n j × ˙ n × ˙ X
65 16 17 51 52 63 64 gsumcl N Fin R Ring M B i N j N P n 0 i M decompPMat n j × ˙ n × ˙ X Base P
66 2 16 3 49 50 65 matbas2d N Fin R Ring M B i N , j N P n 0 i M decompPMat n j × ˙ n × ˙ X B
67 2 3 eqmat M B i N , j N P n 0 i M decompPMat n j × ˙ n × ˙ X B M = i N , j N P n 0 i M decompPMat n j × ˙ n × ˙ X a N b N a M b = a i N , j N P n 0 i M decompPMat n j × ˙ n × ˙ X b
68 48 66 67 syl2anc N Fin R Ring M B M = i N , j N P n 0 i M decompPMat n j × ˙ n × ˙ X a N b N a M b = a i N , j N P n 0 i M decompPMat n j × ˙ n × ˙ X b
69 47 68 mpbird N Fin R Ring M B M = i N , j N P n 0 i M decompPMat n j × ˙ n × ˙ X