Metamath Proof Explorer


Theorem pmatcollpw1

Description: Write a polynomial matrix as a matrix of sums of scaled monomials. (Contributed by AV, 29-Sep-2019) (Revised by AV, 3-Dec-2019)

Ref Expression
Hypotheses pmatcollpw1.p P=Poly1R
pmatcollpw1.c C=NMatP
pmatcollpw1.b B=BaseC
pmatcollpw1.m ×˙=P
pmatcollpw1.e ×˙=mulGrpP
pmatcollpw1.x X=var1R
Assertion pmatcollpw1 NFinRRingMBM=iN,jNPn0iMdecompPMatnj×˙n×˙X

Proof

Step Hyp Ref Expression
1 pmatcollpw1.p P=Poly1R
2 pmatcollpw1.c C=NMatP
3 pmatcollpw1.b B=BaseC
4 pmatcollpw1.m ×˙=P
5 pmatcollpw1.e ×˙=mulGrpP
6 pmatcollpw1.x X=var1R
7 1 2 3 4 5 6 pmatcollpw1lem2 NFinRRingMBaNbNaMb=Pn0aMdecompPMatnb×˙n×˙X
8 eqidd NFinRRingMBaNbNiN,jNPn0iMdecompPMatnj×˙n×˙X=iN,jNPn0iMdecompPMatnj×˙n×˙X
9 oveq12 i=aj=biMdecompPMatnj=aMdecompPMatnb
10 9 oveq1d i=aj=biMdecompPMatnj×˙n×˙X=aMdecompPMatnb×˙n×˙X
11 10 mpteq2dv i=aj=bn0iMdecompPMatnj×˙n×˙X=n0aMdecompPMatnb×˙n×˙X
12 11 oveq2d i=aj=bPn0iMdecompPMatnj×˙n×˙X=Pn0aMdecompPMatnb×˙n×˙X
13 12 adantl NFinRRingMBaNbNi=aj=bPn0iMdecompPMatnj×˙n×˙X=Pn0aMdecompPMatnb×˙n×˙X
14 simprl NFinRRingMBaNbNaN
15 simprr NFinRRingMBaNbNbN
16 eqid BaseP=BaseP
17 eqid 0P=0P
18 1 ply1ring RRingPRing
19 ringcmn PRingPCMnd
20 18 19 syl RRingPCMnd
21 20 3ad2ant2 NFinRRingMBPCMnd
22 21 adantr NFinRRingMBaNbNPCMnd
23 nn0ex 0V
24 23 a1i NFinRRingMBaNbN0V
25 simpl2 NFinRRingMBaNbNRRing
26 25 adantr NFinRRingMBaNbNn0RRing
27 eqid NMatR=NMatR
28 eqid BaseR=BaseR
29 eqid BaseNMatR=BaseNMatR
30 simplrl NFinRRingMBaNbNn0aN
31 15 adantr NFinRRingMBaNbNn0bN
32 simpl3 NFinRRingMBaNbNMB
33 32 adantr NFinRRingMBaNbNn0MB
34 simpr NFinRRingMBaNbNn0n0
35 1 2 3 27 29 decpmatcl RRingMBn0MdecompPMatnBaseNMatR
36 26 33 34 35 syl3anc NFinRRingMBaNbNn0MdecompPMatnBaseNMatR
37 27 28 29 30 31 36 matecld NFinRRingMBaNbNn0aMdecompPMatnbBaseR
38 eqid mulGrpP=mulGrpP
39 28 1 6 4 38 5 16 ply1tmcl RRingaMdecompPMatnbBaseRn0aMdecompPMatnb×˙n×˙XBaseP
40 26 37 34 39 syl3anc NFinRRingMBaNbNn0aMdecompPMatnb×˙n×˙XBaseP
41 40 fmpttd NFinRRingMBaNbNn0aMdecompPMatnb×˙n×˙X:0BaseP
42 1 2 3 4 5 6 pmatcollpw1lem1 NFinRRingMBaNbNfinSupp0Pn0aMdecompPMatnb×˙n×˙X
43 42 3expb NFinRRingMBaNbNfinSupp0Pn0aMdecompPMatnb×˙n×˙X
44 16 17 22 24 41 43 gsumcl NFinRRingMBaNbNPn0aMdecompPMatnb×˙n×˙XBaseP
45 8 13 14 15 44 ovmpod NFinRRingMBaNbNaiN,jNPn0iMdecompPMatnj×˙n×˙Xb=Pn0aMdecompPMatnb×˙n×˙X
46 7 45 eqtr4d NFinRRingMBaNbNaMb=aiN,jNPn0iMdecompPMatnj×˙n×˙Xb
47 46 ralrimivva NFinRRingMBaNbNaMb=aiN,jNPn0iMdecompPMatnj×˙n×˙Xb
48 simp3 NFinRRingMBMB
49 simp1 NFinRRingMBNFin
50 18 3ad2ant2 NFinRRingMBPRing
51 21 3ad2ant1 NFinRRingMBiNjNPCMnd
52 23 a1i NFinRRingMBiNjN0V
53 simpl12 NFinRRingMBiNjNn0RRing
54 simpl2 NFinRRingMBiNjNn0iN
55 simpl3 NFinRRingMBiNjNn0jN
56 48 3ad2ant1 NFinRRingMBiNjNMB
57 56 adantr NFinRRingMBiNjNn0MB
58 simpr NFinRRingMBiNjNn0n0
59 53 57 58 35 syl3anc NFinRRingMBiNjNn0MdecompPMatnBaseNMatR
60 27 28 29 54 55 59 matecld NFinRRingMBiNjNn0iMdecompPMatnjBaseR
61 28 1 6 4 38 5 16 ply1tmcl RRingiMdecompPMatnjBaseRn0iMdecompPMatnj×˙n×˙XBaseP
62 53 60 58 61 syl3anc NFinRRingMBiNjNn0iMdecompPMatnj×˙n×˙XBaseP
63 62 fmpttd NFinRRingMBiNjNn0iMdecompPMatnj×˙n×˙X:0BaseP
64 1 2 3 4 5 6 pmatcollpw1lem1 NFinRRingMBiNjNfinSupp0Pn0iMdecompPMatnj×˙n×˙X
65 16 17 51 52 63 64 gsumcl NFinRRingMBiNjNPn0iMdecompPMatnj×˙n×˙XBaseP
66 2 16 3 49 50 65 matbas2d NFinRRingMBiN,jNPn0iMdecompPMatnj×˙n×˙XB
67 2 3 eqmat MBiN,jNPn0iMdecompPMatnj×˙n×˙XBM=iN,jNPn0iMdecompPMatnj×˙n×˙XaNbNaMb=aiN,jNPn0iMdecompPMatnj×˙n×˙Xb
68 48 66 67 syl2anc NFinRRingMBM=iN,jNPn0iMdecompPMatnj×˙n×˙XaNbNaMb=aiN,jNPn0iMdecompPMatnj×˙n×˙Xb
69 47 68 mpbird NFinRRingMBM=iN,jNPn0iMdecompPMatnj×˙n×˙X