Description: Lemma for pntlemj . (Contributed by Mario Carneiro, 7-Jun-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pntlem1.r | |
|
pntlem1.a | |
||
pntlem1.b | |
||
pntlem1.l | |
||
pntlem1.d | |
||
pntlem1.f | |
||
pntlem1.u | |
||
pntlem1.u2 | |
||
pntlem1.e | |
||
pntlem1.k | |
||
pntlem1.y | |
||
pntlem1.x | |
||
pntlem1.c | |
||
pntlem1.w | |
||
pntlem1.z | |
||
pntlem1.m | |
||
pntlem1.n | |
||
pntlem1.U | |
||
pntlem1.K | |
||
pntlem1.o | |
||
pntlem1.v | |
||
pntlem1.V | |
||
pntlem1.j | |
||
pntlem1.i | |
||
Assertion | pntlemq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pntlem1.r | |
|
2 | pntlem1.a | |
|
3 | pntlem1.b | |
|
4 | pntlem1.l | |
|
5 | pntlem1.d | |
|
6 | pntlem1.f | |
|
7 | pntlem1.u | |
|
8 | pntlem1.u2 | |
|
9 | pntlem1.e | |
|
10 | pntlem1.k | |
|
11 | pntlem1.y | |
|
12 | pntlem1.x | |
|
13 | pntlem1.c | |
|
14 | pntlem1.w | |
|
15 | pntlem1.z | |
|
16 | pntlem1.m | |
|
17 | pntlem1.n | |
|
18 | pntlem1.U | |
|
19 | pntlem1.K | |
|
20 | pntlem1.o | |
|
21 | pntlem1.v | |
|
22 | pntlem1.V | |
|
23 | pntlem1.j | |
|
24 | pntlem1.i | |
|
25 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | pntlemb | |
26 | 25 | simp1d | |
27 | 1 2 3 4 5 6 7 8 9 10 | pntlemc | |
28 | 27 | simp2d | |
29 | elfzoelz | |
|
30 | 23 29 | syl | |
31 | 30 | peano2zd | |
32 | 28 31 | rpexpcld | |
33 | 26 32 | rpdivcld | |
34 | 33 | rpred | |
35 | 34 | flcld | |
36 | 1rp | |
|
37 | 1 2 3 4 5 6 | pntlemd | |
38 | 37 | simp1d | |
39 | 27 | simp1d | |
40 | 38 39 | rpmulcld | |
41 | rpaddcl | |
|
42 | 36 40 41 | sylancr | |
43 | 42 21 | rpmulcld | |
44 | 26 43 | rpdivcld | |
45 | 44 | rpred | |
46 | 45 | flcld | |
47 | 43 | rpred | |
48 | 32 | rpred | |
49 | 22 | simpld | |
50 | 49 | simprd | |
51 | 28 | rpcnd | |
52 | 28 30 | rpexpcld | |
53 | 52 | rpcnd | |
54 | 51 53 | mulcomd | |
55 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | pntlemg | |
56 | 55 | simp1d | |
57 | elfzouz | |
|
58 | 23 57 | syl | |
59 | eluznn | |
|
60 | 56 58 59 | syl2anc | |
61 | 60 | nnnn0d | |
62 | 51 61 | expp1d | |
63 | 54 62 | eqtr4d | |
64 | 50 63 | breqtrd | |
65 | 47 48 64 | ltled | |
66 | 43 32 26 | lediv2d | |
67 | 65 66 | mpbid | |
68 | flwordi | |
|
69 | 34 45 67 68 | syl3anc | |
70 | eluz2 | |
|
71 | 35 46 69 70 | syl3anbrc | |
72 | eluzp1p1 | |
|
73 | fzss1 | |
|
74 | 71 72 73 | 3syl | |
75 | 26 21 | rpdivcld | |
76 | 75 | rpred | |
77 | 76 | flcld | |
78 | 26 52 | rpdivcld | |
79 | 78 | rpred | |
80 | 79 | flcld | |
81 | 52 | rpred | |
82 | 21 | rpred | |
83 | 49 | simpld | |
84 | 81 82 83 | ltled | |
85 | 52 21 26 | lediv2d | |
86 | 84 85 | mpbid | |
87 | flwordi | |
|
88 | 76 79 86 87 | syl3anc | |
89 | eluz2 | |
|
90 | 77 80 88 89 | syl3anbrc | |
91 | fzss2 | |
|
92 | 90 91 | syl | |
93 | 74 92 | sstrd | |
94 | 93 24 20 | 3sstr4g | |