Metamath Proof Explorer


Theorem pntlemq

Description: Lemma for pntlemj . (Contributed by Mario Carneiro, 7-Jun-2016)

Ref Expression
Hypotheses pntlem1.r R=a+ψaa
pntlem1.a φA+
pntlem1.b φB+
pntlem1.l φL01
pntlem1.d D=A+1
pntlem1.f F=11DL32BD2
pntlem1.u φU+
pntlem1.u2 φUA
pntlem1.e E=UD
pntlem1.k K=eBE
pntlem1.y φY+1Y
pntlem1.x φX+Y<X
pntlem1.c φC+
pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
pntlem1.z φZW+∞
pntlem1.m M=logXlogK+1
pntlem1.n N=logZlogK2
pntlem1.U φzY+∞RzzU
pntlem1.K φyX+∞z+y<z1+LEz<Kyuz1+LEzRuuE
pntlem1.o O=ZKJ+1+1ZKJ
pntlem1.v φV+
pntlem1.V φKJ<V1+LEV<KKJuV1+LEVRuuE
pntlem1.j φJM..^N
pntlem1.i I=Z1+LEV+1ZV
Assertion pntlemq φIO

Proof

Step Hyp Ref Expression
1 pntlem1.r R=a+ψaa
2 pntlem1.a φA+
3 pntlem1.b φB+
4 pntlem1.l φL01
5 pntlem1.d D=A+1
6 pntlem1.f F=11DL32BD2
7 pntlem1.u φU+
8 pntlem1.u2 φUA
9 pntlem1.e E=UD
10 pntlem1.k K=eBE
11 pntlem1.y φY+1Y
12 pntlem1.x φX+Y<X
13 pntlem1.c φC+
14 pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
15 pntlem1.z φZW+∞
16 pntlem1.m M=logXlogK+1
17 pntlem1.n N=logZlogK2
18 pntlem1.U φzY+∞RzzU
19 pntlem1.K φyX+∞z+y<z1+LEz<Kyuz1+LEzRuuE
20 pntlem1.o O=ZKJ+1+1ZKJ
21 pntlem1.v φV+
22 pntlem1.V φKJ<V1+LEV<KKJuV1+LEVRuuE
23 pntlem1.j φJM..^N
24 pntlem1.i I=Z1+LEV+1ZV
25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pntlemb φZ+1<ZeZZZY4LEZlogXlogK+2logZlogK4U3+CUELE232BlogZ
26 25 simp1d φZ+
27 1 2 3 4 5 6 7 8 9 10 pntlemc φE+K+E011<KUE+
28 27 simp2d φK+
29 elfzoelz JM..^NJ
30 23 29 syl φJ
31 30 peano2zd φJ+1
32 28 31 rpexpcld φKJ+1+
33 26 32 rpdivcld φZKJ+1+
34 33 rpred φZKJ+1
35 34 flcld φZKJ+1
36 1rp 1+
37 1 2 3 4 5 6 pntlemd φL+D+F+
38 37 simp1d φL+
39 27 simp1d φE+
40 38 39 rpmulcld φLE+
41 rpaddcl 1+LE+1+LE+
42 36 40 41 sylancr φ1+LE+
43 42 21 rpmulcld φ1+LEV+
44 26 43 rpdivcld φZ1+LEV+
45 44 rpred φZ1+LEV
46 45 flcld φZ1+LEV
47 43 rpred φ1+LEV
48 32 rpred φKJ+1
49 22 simpld φKJ<V1+LEV<KKJ
50 49 simprd φ1+LEV<KKJ
51 28 rpcnd φK
52 28 30 rpexpcld φKJ+
53 52 rpcnd φKJ
54 51 53 mulcomd φKKJ=KJK
55 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pntlemg φMNMlogZlogK4NM
56 55 simp1d φM
57 elfzouz JM..^NJM
58 23 57 syl φJM
59 eluznn MJMJ
60 56 58 59 syl2anc φJ
61 60 nnnn0d φJ0
62 51 61 expp1d φKJ+1=KJK
63 54 62 eqtr4d φKKJ=KJ+1
64 50 63 breqtrd φ1+LEV<KJ+1
65 47 48 64 ltled φ1+LEVKJ+1
66 43 32 26 lediv2d φ1+LEVKJ+1ZKJ+1Z1+LEV
67 65 66 mpbid φZKJ+1Z1+LEV
68 flwordi ZKJ+1Z1+LEVZKJ+1Z1+LEVZKJ+1Z1+LEV
69 34 45 67 68 syl3anc φZKJ+1Z1+LEV
70 eluz2 Z1+LEVZKJ+1ZKJ+1Z1+LEVZKJ+1Z1+LEV
71 35 46 69 70 syl3anbrc φZ1+LEVZKJ+1
72 eluzp1p1 Z1+LEVZKJ+1Z1+LEV+1ZKJ+1+1
73 fzss1 Z1+LEV+1ZKJ+1+1Z1+LEV+1ZVZKJ+1+1ZV
74 71 72 73 3syl φZ1+LEV+1ZVZKJ+1+1ZV
75 26 21 rpdivcld φZV+
76 75 rpred φZV
77 76 flcld φZV
78 26 52 rpdivcld φZKJ+
79 78 rpred φZKJ
80 79 flcld φZKJ
81 52 rpred φKJ
82 21 rpred φV
83 49 simpld φKJ<V
84 81 82 83 ltled φKJV
85 52 21 26 lediv2d φKJVZVZKJ
86 84 85 mpbid φZVZKJ
87 flwordi ZVZKJZVZKJZVZKJ
88 76 79 86 87 syl3anc φZVZKJ
89 eluz2 ZKJZVZVZKJZVZKJ
90 77 80 88 89 syl3anbrc φZKJZV
91 fzss2 ZKJZVZKJ+1+1ZVZKJ+1+1ZKJ
92 90 91 syl φZKJ+1+1ZVZKJ+1+1ZKJ
93 74 92 sstrd φZ1+LEV+1ZVZKJ+1+1ZKJ
94 93 24 20 3sstr4g φIO