Metamath Proof Explorer


Theorem pntrmax

Description: There is a bound on the residual valid for all x . (Contributed by Mario Carneiro, 9-Apr-2016)

Ref Expression
Hypothesis pntrval.r R=a+ψaa
Assertion pntrmax c+x+Rxxc

Proof

Step Hyp Ref Expression
1 pntrval.r R=a+ψaa
2 rpssre +
3 2 a1i +
4 1red 1
5 1 pntrval x+Rx=ψxx
6 rpre x+x
7 chpcl xψx
8 6 7 syl x+ψx
9 8 6 resubcld x+ψxx
10 5 9 eqeltrd x+Rx
11 rerpdivcl Rxx+Rxx
12 10 11 mpancom x+Rxx
13 12 recnd x+Rxx
14 13 adantl x+Rxx
15 5 oveq1d x+Rxx=ψxxx
16 8 recnd x+ψx
17 rpcn x+x
18 rpne0 x+x0
19 16 17 17 18 divsubdird x+ψxxx=ψxxxx
20 17 18 dividd x+xx=1
21 20 oveq2d x+ψxxxx=ψxx1
22 15 19 21 3eqtrd x+Rxx=ψxx1
23 22 mpteq2ia x+Rxx=x+ψxx1
24 rerpdivcl ψxx+ψxx
25 8 24 mpancom x+ψxx
26 25 adantl x+ψxx
27 1red x+1
28 chpo1ub x+ψxx𝑂1
29 28 a1i x+ψxx𝑂1
30 ax-1cn 1
31 o1const +1x+1𝑂1
32 2 30 31 mp2an x+1𝑂1
33 32 a1i x+1𝑂1
34 26 27 29 33 o1sub2 x+ψxx1𝑂1
35 23 34 eqeltrid x+Rxx𝑂1
36 chpcl yψy
37 peano2re ψyψy+1
38 36 37 syl yψy+1
39 38 ad2antrl y1yψy+1
40 22 3ad2ant1 x+yx<yRxx=ψxx1
41 40 fveq2d x+yx<yRxx=ψxx1
42 1re 1
43 38 3ad2ant2 x+yx<yψy+1
44 resubcl 1ψy+11ψy+1
45 42 43 44 sylancr x+yx<y1ψy+1
46 0red x+yx<y0
47 25 3ad2ant1 x+yx<yψxx
48 chpge0 y0ψy
49 48 3ad2ant2 x+yx<y0ψy
50 36 3ad2ant2 x+yx<yψy
51 addge02 1ψy0ψy1ψy+1
52 42 50 51 sylancr x+yx<y0ψy1ψy+1
53 49 52 mpbid x+yx<y1ψy+1
54 suble0 1ψy+11ψy+101ψy+1
55 42 43 54 sylancr x+yx<y1ψy+101ψy+1
56 53 55 mpbird x+yx<y1ψy+10
57 8 3ad2ant1 x+yx<yψx
58 6 3ad2ant1 x+yx<yx
59 chpge0 x0ψx
60 58 59 syl x+yx<y0ψx
61 rpregt0 x+x0<x
62 61 3ad2ant1 x+yx<yx0<x
63 divge0 ψx0ψxx0<x0ψxx
64 57 60 62 63 syl21anc x+yx<y0ψxx
65 45 46 47 56 64 letrd x+yx<y1ψy+1ψxx
66 2re 2
67 readdcl ψy2ψy+2
68 50 66 67 sylancl x+yx<yψy+2
69 1red x+yx<y1
70 58 adantr x+yx<yx1x
71 1red x+yx<yx11
72 66 a1i x+yx<yx12
73 simpr x+yx<yx1x1
74 1lt2 1<2
75 74 a1i x+yx<yx11<2
76 70 71 72 73 75 lelttrd x+yx<yx1x<2
77 chpeq0 xψx=0x<2
78 70 77 syl x+yx<yx1ψx=0x<2
79 76 78 mpbird x+yx<yx1ψx=0
80 79 oveq1d x+yx<yx1ψxx=0x
81 simp1 x+yx<yx+
82 81 rpcnne0d x+yx<yxx0
83 div0 xx00x=0
84 82 83 syl x+yx<y0x=0
85 84 49 eqbrtrd x+yx<y0xψy
86 85 adantr x+yx<yx10xψy
87 80 86 eqbrtrd x+yx<yx1ψxxψy
88 47 adantr x+yx<y1xψxx
89 57 adantr x+yx<y1xψx
90 50 adantr x+yx<y1xψy
91 0lt1 0<1
92 91 a1i x+yx<y0<1
93 lediv2a 10<1x0<xψx0ψx1xψxxψx1
94 93 ex 10<1x0<xψx0ψx1xψxxψx1
95 69 92 62 57 60 94 syl212anc x+yx<y1xψxxψx1
96 95 imp x+yx<y1xψxxψx1
97 89 recnd x+yx<y1xψx
98 97 div1d x+yx<y1xψx1=ψx
99 96 98 breqtrd x+yx<y1xψxxψx
100 simp2 x+yx<yy
101 ltle xyx<yxy
102 6 101 sylan x+yx<yxy
103 102 3impia x+yx<yxy
104 chpwordi xyxyψxψy
105 58 100 103 104 syl3anc x+yx<yψxψy
106 105 adantr x+yx<y1xψxψy
107 88 89 90 99 106 letrd x+yx<y1xψxxψy
108 58 69 87 107 lecasei x+yx<yψxxψy
109 2nn0 20
110 nn0addge1 ψy20ψyψy+2
111 50 109 110 sylancl x+yx<yψyψy+2
112 47 50 68 108 111 letrd x+yx<yψxxψy+2
113 df-2 2=1+1
114 113 oveq2i ψy+2=ψy+1+1
115 50 recnd x+yx<yψy
116 30 a1i x+yx<y1
117 115 116 116 add12d x+yx<yψy+1+1=1+ψy+1
118 114 117 eqtrid x+yx<yψy+2=1+ψy+1
119 112 118 breqtrd x+yx<yψxx1+ψy+1
120 47 69 43 absdifled x+yx<yψxx1ψy+11ψy+1ψxxψxx1+ψy+1
121 65 119 120 mpbir2and x+yx<yψxx1ψy+1
122 41 121 eqbrtrd x+yx<yRxxψy+1
123 122 3expb x+yx<yRxxψy+1
124 123 adantrlr x+y1yx<yRxxψy+1
125 124 adantll x+y1yx<yRxxψy+1
126 3 4 14 35 39 125 o1bddrp c+x+Rxxc
127 126 mptru c+x+Rxxc