Description: Lemma for ptcmp . (Contributed by Mario Carneiro, 26-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ptcmp.1 | |
|
ptcmp.2 | |
||
ptcmp.3 | |
||
ptcmp.4 | |
||
ptcmp.5 | |
||
Assertion | ptcmplem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ptcmp.1 | |
|
2 | ptcmp.2 | |
|
3 | ptcmp.3 | |
|
4 | ptcmp.4 | |
|
5 | ptcmp.5 | |
|
6 | 5 | elin1d | |
7 | 1 2 3 4 5 | ptcmplem1 | |
8 | 7 | simpld | |
9 | 7 | simprd | |
10 | elpwi | |
|
11 | 3 | ad2antrr | |
12 | 4 | ad2antrr | |
13 | 5 | ad2antrr | |
14 | simplrl | |
|
15 | simplrr | |
|
16 | simpr | |
|
17 | imaeq2 | |
|
18 | 17 | eleq1d | |
19 | 18 | cbvrabv | |
20 | 1 2 11 12 13 14 15 16 19 | ptcmplem4 | |
21 | iman | |
|
22 | 20 21 | mpbir | |
23 | 22 | expr | |
24 | 10 23 | sylan2 | |
25 | 24 | adantlr | |
26 | velpw | |
|
27 | eldif | |
|
28 | elpwunsn | |
|
29 | 27 28 | sylbir | |
30 | 26 29 | sylanbr | |
31 | 30 | adantll | |
32 | snssi | |
|
33 | 32 | adantl | |
34 | snfi | |
|
35 | elfpw | |
|
36 | 33 34 35 | sylanblrc | |
37 | unisng | |
|
38 | 37 | eqcomd | |
39 | 38 | adantl | |
40 | unieq | |
|
41 | 40 | rspceeqv | |
42 | 36 39 41 | syl2anc | |
43 | 42 | a1d | |
44 | 31 43 | syldan | |
45 | 25 44 | pm2.61dan | |
46 | 45 | impr | |
47 | 6 8 9 46 | alexsub | |