Metamath Proof Explorer


Theorem ptcmplem5

Description: Lemma for ptcmp . (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypotheses ptcmp.1 S = k A , u F k w X w k -1 u
ptcmp.2 X = n A F n
ptcmp.3 φ A V
ptcmp.4 φ F : A Comp
ptcmp.5 φ X UFL dom card
Assertion ptcmplem5 φ 𝑡 F Comp

Proof

Step Hyp Ref Expression
1 ptcmp.1 S = k A , u F k w X w k -1 u
2 ptcmp.2 X = n A F n
3 ptcmp.3 φ A V
4 ptcmp.4 φ F : A Comp
5 ptcmp.5 φ X UFL dom card
6 5 elin1d φ X UFL
7 1 2 3 4 5 ptcmplem1 φ X = ran S X 𝑡 F = topGen fi ran S X
8 7 simpld φ X = ran S X
9 7 simprd φ 𝑡 F = topGen fi ran S X
10 elpwi y 𝒫 ran S y ran S
11 3 ad2antrr φ y ran S X = y ¬ z 𝒫 y Fin X = z A V
12 4 ad2antrr φ y ran S X = y ¬ z 𝒫 y Fin X = z F : A Comp
13 5 ad2antrr φ y ran S X = y ¬ z 𝒫 y Fin X = z X UFL dom card
14 simplrl φ y ran S X = y ¬ z 𝒫 y Fin X = z y ran S
15 simplrr φ y ran S X = y ¬ z 𝒫 y Fin X = z X = y
16 simpr φ y ran S X = y ¬ z 𝒫 y Fin X = z ¬ z 𝒫 y Fin X = z
17 imaeq2 z = u w X w k -1 z = w X w k -1 u
18 17 eleq1d z = u w X w k -1 z y w X w k -1 u y
19 18 cbvrabv z F k | w X w k -1 z y = u F k | w X w k -1 u y
20 1 2 11 12 13 14 15 16 19 ptcmplem4 ¬ φ y ran S X = y ¬ z 𝒫 y Fin X = z
21 iman φ y ran S X = y z 𝒫 y Fin X = z ¬ φ y ran S X = y ¬ z 𝒫 y Fin X = z
22 20 21 mpbir φ y ran S X = y z 𝒫 y Fin X = z
23 22 expr φ y ran S X = y z 𝒫 y Fin X = z
24 10 23 sylan2 φ y 𝒫 ran S X = y z 𝒫 y Fin X = z
25 24 adantlr φ y ran S X y 𝒫 ran S X = y z 𝒫 y Fin X = z
26 velpw y 𝒫 ran S X y ran S X
27 eldif y 𝒫 ran S X 𝒫 ran S y 𝒫 ran S X ¬ y 𝒫 ran S
28 elpwunsn y 𝒫 ran S X 𝒫 ran S X y
29 27 28 sylbir y 𝒫 ran S X ¬ y 𝒫 ran S X y
30 26 29 sylanbr y ran S X ¬ y 𝒫 ran S X y
31 30 adantll φ y ran S X ¬ y 𝒫 ran S X y
32 snssi X y X y
33 32 adantl φ y ran S X X y X y
34 snfi X Fin
35 elfpw X 𝒫 y Fin X y X Fin
36 33 34 35 sylanblrc φ y ran S X X y X 𝒫 y Fin
37 unisng X y X = X
38 37 eqcomd X y X = X
39 38 adantl φ y ran S X X y X = X
40 unieq z = X z = X
41 40 rspceeqv X 𝒫 y Fin X = X z 𝒫 y Fin X = z
42 36 39 41 syl2anc φ y ran S X X y z 𝒫 y Fin X = z
43 42 a1d φ y ran S X X y X = y z 𝒫 y Fin X = z
44 31 43 syldan φ y ran S X ¬ y 𝒫 ran S X = y z 𝒫 y Fin X = z
45 25 44 pm2.61dan φ y ran S X X = y z 𝒫 y Fin X = z
46 45 impr φ y ran S X X = y z 𝒫 y Fin X = z
47 6 8 9 46 alexsub φ 𝑡 F Comp