Metamath Proof Explorer


Theorem ptcmplem5

Description: Lemma for ptcmp . (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypotheses ptcmp.1 S=kA,uFkwXwk-1u
ptcmp.2 X=nAFn
ptcmp.3 φAV
ptcmp.4 φF:AComp
ptcmp.5 φXUFLdomcard
Assertion ptcmplem5 φ𝑡FComp

Proof

Step Hyp Ref Expression
1 ptcmp.1 S=kA,uFkwXwk-1u
2 ptcmp.2 X=nAFn
3 ptcmp.3 φAV
4 ptcmp.4 φF:AComp
5 ptcmp.5 φXUFLdomcard
6 5 elin1d φXUFL
7 1 2 3 4 5 ptcmplem1 φX=ranSX𝑡F=topGenfiranSX
8 7 simpld φX=ranSX
9 7 simprd φ𝑡F=topGenfiranSX
10 elpwi y𝒫ranSyranS
11 3 ad2antrr φyranSX=y¬z𝒫yFinX=zAV
12 4 ad2antrr φyranSX=y¬z𝒫yFinX=zF:AComp
13 5 ad2antrr φyranSX=y¬z𝒫yFinX=zXUFLdomcard
14 simplrl φyranSX=y¬z𝒫yFinX=zyranS
15 simplrr φyranSX=y¬z𝒫yFinX=zX=y
16 simpr φyranSX=y¬z𝒫yFinX=z¬z𝒫yFinX=z
17 imaeq2 z=uwXwk-1z=wXwk-1u
18 17 eleq1d z=uwXwk-1zywXwk-1uy
19 18 cbvrabv zFk|wXwk-1zy=uFk|wXwk-1uy
20 1 2 11 12 13 14 15 16 19 ptcmplem4 ¬φyranSX=y¬z𝒫yFinX=z
21 iman φyranSX=yz𝒫yFinX=z¬φyranSX=y¬z𝒫yFinX=z
22 20 21 mpbir φyranSX=yz𝒫yFinX=z
23 22 expr φyranSX=yz𝒫yFinX=z
24 10 23 sylan2 φy𝒫ranSX=yz𝒫yFinX=z
25 24 adantlr φyranSXy𝒫ranSX=yz𝒫yFinX=z
26 velpw y𝒫ranSXyranSX
27 eldif y𝒫ranSX𝒫ranSy𝒫ranSX¬y𝒫ranS
28 elpwunsn y𝒫ranSX𝒫ranSXy
29 27 28 sylbir y𝒫ranSX¬y𝒫ranSXy
30 26 29 sylanbr yranSX¬y𝒫ranSXy
31 30 adantll φyranSX¬y𝒫ranSXy
32 snssi XyXy
33 32 adantl φyranSXXyXy
34 snfi XFin
35 elfpw X𝒫yFinXyXFin
36 33 34 35 sylanblrc φyranSXXyX𝒫yFin
37 unisng XyX=X
38 37 eqcomd XyX=X
39 38 adantl φyranSXXyX=X
40 unieq z=Xz=X
41 40 rspceeqv X𝒫yFinX=Xz𝒫yFinX=z
42 36 39 41 syl2anc φyranSXXyz𝒫yFinX=z
43 42 a1d φyranSXXyX=yz𝒫yFinX=z
44 31 43 syldan φyranSX¬y𝒫ranSX=yz𝒫yFinX=z
45 25 44 pm2.61dan φyranSXX=yz𝒫yFinX=z
46 45 impr φyranSXX=yz𝒫yFinX=z
47 6 8 9 46 alexsub φ𝑡FComp