Metamath Proof Explorer


Theorem rankcf

Description: Any set must be at least as large as the cofinality of its rank, because the ranks of the elements of A form a cofinal map into ( rankA ) . (Contributed by Mario Carneiro, 27-May-2013)

Ref Expression
Assertion rankcf ¬AcfrankA

Proof

Step Hyp Ref Expression
1 rankon rankAOn
2 onzsl rankAOnrankA=xOnrankA=sucxrankAVLimrankA
3 1 2 mpbi rankA=xOnrankA=sucxrankAVLimrankA
4 sdom0 ¬A
5 fveq2 rankA=cfrankA=cf
6 cf0 cf=
7 5 6 eqtrdi rankA=cfrankA=
8 7 breq2d rankA=AcfrankAA
9 4 8 mtbiri rankA=¬AcfrankA
10 fveq2 rankA=sucxcfrankA=cfsucx
11 cfsuc xOncfsucx=1𝑜
12 10 11 sylan9eqr xOnrankA=sucxcfrankA=1𝑜
13 nsuceq0 sucx
14 neeq1 rankA=sucxrankAsucx
15 13 14 mpbiri rankA=sucxrankA
16 fveq2 A=rankA=rank
17 0elon On
18 r1fnon R1FnOn
19 18 fndmi domR1=On
20 17 19 eleqtrri domR1
21 rankonid domR1rank=
22 20 21 mpbi rank=
23 16 22 eqtrdi A=rankA=
24 23 necon3i rankAA
25 rankvaln ¬AR1OnrankA=
26 25 necon1ai rankAAR1On
27 breq2 y=A1𝑜y1𝑜A
28 neeq1 y=AyA
29 0sdom1dom y1𝑜y
30 vex yV
31 30 0sdom yy
32 29 31 bitr3i 1𝑜yy
33 27 28 32 vtoclbg AR1On1𝑜AA
34 26 33 syl rankA1𝑜AA
35 24 34 mpbird rankA1𝑜A
36 15 35 syl rankA=sucx1𝑜A
37 36 adantl xOnrankA=sucx1𝑜A
38 12 37 eqbrtrd xOnrankA=sucxcfrankAA
39 38 rexlimiva xOnrankA=sucxcfrankAA
40 domnsym cfrankAA¬AcfrankA
41 39 40 syl xOnrankA=sucx¬AcfrankA
42 nlim0 ¬Lim
43 limeq rankA=LimrankALim
44 42 43 mtbiri rankA=¬LimrankA
45 25 44 syl ¬AR1On¬LimrankA
46 45 con4i LimrankAAR1On
47 r1elssi AR1OnAR1On
48 46 47 syl LimrankAAR1On
49 48 sselda LimrankAxAxR1On
50 ranksnb xR1Onrankx=sucrankx
51 49 50 syl LimrankAxArankx=sucrankx
52 rankelb AR1OnxArankxrankA
53 46 52 syl LimrankAxArankxrankA
54 limsuc LimrankArankxrankAsucrankxrankA
55 53 54 sylibd LimrankAxAsucrankxrankA
56 55 imp LimrankAxAsucrankxrankA
57 51 56 eqeltrd LimrankAxArankxrankA
58 eleq1a rankxrankAw=rankxwrankA
59 57 58 syl LimrankAxAw=rankxwrankA
60 59 rexlimdva LimrankAxAw=rankxwrankA
61 60 abssdv LimrankAw|xAw=rankxrankA
62 vsnex xV
63 62 dfiun2 xAx=y|xAy=x
64 iunid xAx=A
65 63 64 eqtr3i y|xAy=x=A
66 65 fveq2i ranky|xAy=x=rankA
67 47 sselda AR1OnxAxR1On
68 snwf xR1OnxR1On
69 eleq1a xR1Ony=xyR1On
70 67 68 69 3syl AR1OnxAy=xyR1On
71 70 rexlimdva AR1OnxAy=xyR1On
72 71 abssdv AR1Ony|xAy=xR1On
73 abrexexg AR1Ony|xAy=xV
74 eleq1 z=y|xAy=xzR1Ony|xAy=xR1On
75 sseq1 z=y|xAy=xzR1Ony|xAy=xR1On
76 vex zV
77 76 r1elss zR1OnzR1On
78 74 75 77 vtoclbg y|xAy=xVy|xAy=xR1Ony|xAy=xR1On
79 73 78 syl AR1Ony|xAy=xR1Ony|xAy=xR1On
80 72 79 mpbird AR1Ony|xAy=xR1On
81 rankuni2b y|xAy=xR1Onranky|xAy=x=zy|xAy=xrankz
82 80 81 syl AR1Onranky|xAy=x=zy|xAy=xrankz
83 66 82 eqtr3id AR1OnrankA=zy|xAy=xrankz
84 fvex rankzV
85 84 dfiun2 zy|xAy=xrankz=w|zy|xAy=xw=rankz
86 fveq2 z=xrankz=rankx
87 62 86 abrexco w|zy|xAy=xw=rankz=w|xAw=rankx
88 87 unieqi w|zy|xAy=xw=rankz=w|xAw=rankx
89 85 88 eqtri zy|xAy=xrankz=w|xAw=rankx
90 83 89 eqtr2di AR1Onw|xAw=rankx=rankA
91 46 90 syl LimrankAw|xAw=rankx=rankA
92 fvex rankAV
93 92 cfslb LimrankAw|xAw=rankxrankAw|xAw=rankx=rankAcfrankAw|xAw=rankx
94 61 91 93 mpd3an23 LimrankAcfrankAw|xAw=rankx
95 2fveq3 y=Acfranky=cfrankA
96 breq12 y=Acfranky=cfrankAycfrankyAcfrankA
97 95 96 mpdan y=AycfrankyAcfrankA
98 rexeq y=Axyw=rankxxAw=rankx
99 98 abbidv y=Aw|xyw=rankx=w|xAw=rankx
100 breq12 w|xyw=rankx=w|xAw=rankxy=Aw|xyw=rankxyw|xAw=rankxA
101 99 100 mpancom y=Aw|xyw=rankxyw|xAw=rankxA
102 97 101 imbi12d y=Aycfrankyw|xyw=rankxyAcfrankAw|xAw=rankxA
103 eqid xyrankx=xyrankx
104 103 rnmpt ranxyrankx=w|xyw=rankx
105 cfon cfrankyOn
106 sdomdom ycfrankyycfranky
107 ondomen cfrankyOnycfrankyydomcard
108 105 106 107 sylancr ycfrankyydomcard
109 fvex rankxV
110 109 103 fnmpti xyrankxFny
111 dffn4 xyrankxFnyxyrankx:yontoranxyrankx
112 110 111 mpbi xyrankx:yontoranxyrankx
113 fodomnum ydomcardxyrankx:yontoranxyrankxranxyrankxy
114 108 112 113 mpisyl ycfrankyranxyrankxy
115 104 114 eqbrtrrid ycfrankyw|xyw=rankxy
116 102 115 vtoclg AR1OnAcfrankAw|xAw=rankxA
117 46 116 syl LimrankAAcfrankAw|xAw=rankxA
118 domtr cfrankAw|xAw=rankxw|xAw=rankxAcfrankAA
119 118 40 syl cfrankAw|xAw=rankxw|xAw=rankxA¬AcfrankA
120 94 117 119 syl6an LimrankAAcfrankA¬AcfrankA
121 120 pm2.01d LimrankA¬AcfrankA
122 121 adantl rankAVLimrankA¬AcfrankA
123 9 41 122 3jaoi rankA=xOnrankA=sucxrankAVLimrankA¬AcfrankA
124 3 123 ax-mp ¬AcfrankA