Description: Restriction of elements of an infinite Cartesian product creates a surjection, if the original Cartesian product is nonempty. (Contributed by Mario Carneiro, 27-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | resixpfo.1 | |
|
Assertion | resixpfo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resixpfo.1 | |
|
2 | resixp | |
|
3 | 2 1 | fmptd | |
4 | 3 | adantr | |
5 | n0 | |
|
6 | eleq1w | |
|
7 | 6 | ifbid | |
8 | id | |
|
9 | 7 8 | fveq12d | |
10 | 9 | cbvmptv | |
11 | vex | |
|
12 | 11 | elixp | |
13 | 12 | simprbi | |
14 | fveq1 | |
|
15 | 14 | eleq1d | |
16 | fveq1 | |
|
17 | 16 | eleq1d | |
18 | simpl | |
|
19 | 18 | imp | |
20 | simplrr | |
|
21 | 15 17 19 20 | ifbothda | |
22 | 21 | exp32 | |
23 | 22 | ralimi2 | |
24 | 13 23 | syl | |
25 | 24 | adantl | |
26 | ralim | |
|
27 | 25 26 | syl | |
28 | vex | |
|
29 | 28 | elixp | |
30 | 29 | simprbi | |
31 | 27 30 | impel | |
32 | n0i | |
|
33 | ixpprc | |
|
34 | 32 33 | nsyl2 | |
35 | 34 | adantl | |
36 | mptelixpg | |
|
37 | 35 36 | syl | |
38 | 31 37 | mpbird | |
39 | 10 38 | eqeltrid | |
40 | reseq1 | |
|
41 | iftrue | |
|
42 | 41 | fveq1d | |
43 | 42 | mpteq2ia | |
44 | resmpt | |
|
45 | 44 | ad2antrr | |
46 | ixpfn | |
|
47 | 46 | ad2antlr | |
48 | dffn5 | |
|
49 | 47 48 | sylib | |
50 | 43 45 49 | 3eqtr4a | |
51 | 50 11 | eqeltrdi | |
52 | 1 40 39 51 | fvmptd3 | |
53 | 52 50 | eqtr2d | |
54 | fveq2 | |
|
55 | 54 | rspceeqv | |
56 | 39 53 55 | syl2anc | |
57 | 56 | ex | |
58 | 57 | ralrimdva | |
59 | 58 | exlimdv | |
60 | 5 59 | biimtrid | |
61 | 60 | imp | |
62 | dffo3 | |
|
63 | 4 61 62 | sylanbrc | |