Metamath Proof Explorer


Theorem rhmimaidl

Description: The image of an ideal I by a surjective ring homomorphism F is an ideal. (Contributed by Thierry Arnoux, 6-Jul-2024)

Ref Expression
Hypotheses rhmimaidl.b B=BaseS
rhmimaidl.t T=LIdealR
rhmimaidl.u U=LIdealS
Assertion rhmimaidl FRRingHomSranF=BITFIU

Proof

Step Hyp Ref Expression
1 rhmimaidl.b B=BaseS
2 rhmimaidl.t T=LIdealR
3 rhmimaidl.u U=LIdealS
4 eqid BaseR=BaseR
5 4 1 rhmf FRRingHomSF:BaseRB
6 fimass F:BaseRBFIB
7 5 6 syl FRRingHomSFIB
8 7 ad2antrr FRRingHomSranF=BITFIB
9 5 ffnd FRRingHomSFFnBaseR
10 9 ad2antrr FRRingHomSranF=BITFFnBaseR
11 rhmrcl1 FRRingHomSRRing
12 11 ad2antrr FRRingHomSranF=BITRRing
13 eqid 0R=0R
14 4 13 ring0cl RRing0RBaseR
15 12 14 syl FRRingHomSranF=BIT0RBaseR
16 simpr FRRingHomSranF=BITIT
17 2 13 lidl0cl RRingIT0RI
18 12 16 17 syl2anc FRRingHomSranF=BIT0RI
19 10 15 18 fnfvimad FRRingHomSranF=BITF0RFI
20 19 ne0d FRRingHomSranF=BITFI
21 rhmghm FRRingHomSFRGrpHomS
22 21 ad4antr FRRingHomSITjIiIzBaseRFRGrpHomS
23 11 ad4antr FRRingHomSITjIiIzBaseRRRing
24 simpr FRRingHomSITjIiIzBaseRzBaseR
25 4 2 lidlss ITIBaseR
26 25 ad4antlr FRRingHomSITjIiIzBaseRIBaseR
27 simplr FRRingHomSITjIiIzBaseRiI
28 26 27 sseldd FRRingHomSITjIiIzBaseRiBaseR
29 eqid R=R
30 4 29 ringcl RRingzBaseRiBaseRzRiBaseR
31 23 24 28 30 syl3anc FRRingHomSITjIiIzBaseRzRiBaseR
32 simpllr FRRingHomSITjIiIzBaseRjI
33 26 32 sseldd FRRingHomSITjIiIzBaseRjBaseR
34 eqid +R=+R
35 eqid +S=+S
36 4 34 35 ghmlin FRGrpHomSzRiBaseRjBaseRFzRi+Rj=FzRi+SFj
37 22 31 33 36 syl3anc FRRingHomSITjIiIzBaseRFzRi+Rj=FzRi+SFj
38 simp-4l FRRingHomSITjIiIzBaseRFRRingHomS
39 eqid S=S
40 4 29 39 rhmmul FRRingHomSzBaseRiBaseRFzRi=FzSFi
41 38 24 28 40 syl3anc FRRingHomSITjIiIzBaseRFzRi=FzSFi
42 41 oveq1d FRRingHomSITjIiIzBaseRFzRi+SFj=FzSFi+SFj
43 37 42 eqtrd FRRingHomSITjIiIzBaseRFzRi+Rj=FzSFi+SFj
44 43 adantl4r FRRingHomSranF=BITjIiIzBaseRFzRi+Rj=FzSFi+SFj
45 44 adantl3r FRRingHomSranF=BITxBjIiIzBaseRFzRi+Rj=FzSFi+SFj
46 45 adantl3r FRRingHomSranF=BITxBaFIjIiIzBaseRFzRi+Rj=FzSFi+SFj
47 46 adantl3r FRRingHomSranF=BITxBaFIbFIjIiIzBaseRFzRi+Rj=FzSFi+SFj
48 47 adantllr FRRingHomSranF=BITxBaFIbFIjIFj=biIzBaseRFzRi+Rj=FzSFi+SFj
49 48 ad4ant13 FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=azBaseRFz=xFzRi+Rj=FzSFi+SFj
50 simpr FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=azBaseRFz=xFz=x
51 simpllr FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=azBaseRFz=xFi=a
52 50 51 oveq12d FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=azBaseRFz=xFzSFi=xSa
53 simp-5r FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=azBaseRFz=xFj=b
54 52 53 oveq12d FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=azBaseRFz=xFzSFi+SFj=xSa+Sb
55 49 54 eqtrd FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=azBaseRFz=xFzRi+Rj=xSa+Sb
56 10 ad9antr FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=azBaseRFz=xFFnBaseR
57 16 25 syl FRRingHomSranF=BITIBaseR
58 57 ad9antr FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=azBaseRFz=xIBaseR
59 16 ad9antr FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=azBaseRFz=xIT
60 simplr FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=azBaseRFz=xzBaseR
61 simp-4r FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=azBaseRFz=xiI
62 simp-6r FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=azBaseRFz=xjI
63 2 4 34 29 islidl ITIBaseRIzBaseRiIjIzRi+RjI
64 63 simp3bi ITzBaseRiIjIzRi+RjI
65 64 r19.21bi ITzBaseRiIjIzRi+RjI
66 65 r19.21bi ITzBaseRiIjIzRi+RjI
67 66 r19.21bi ITzBaseRiIjIzRi+RjI
68 59 60 61 62 67 syl1111anc FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=azBaseRFz=xzRi+RjI
69 58 68 sseldd FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=azBaseRFz=xzRi+RjBaseR
70 56 69 68 fnfvimad FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=azBaseRFz=xFzRi+RjFI
71 55 70 eqeltrrd FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=azBaseRFz=xxSa+SbFI
72 5 ad2antrr FRRingHomSranF=BITF:BaseRB
73 72 ffund FRRingHomSranF=BITFunF
74 73 ad7antr FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=aFunF
75 5 fdmd FRRingHomSdomF=BaseR
76 75 imaeq2d FRRingHomSFdomF=FBaseR
77 imadmrn FdomF=ranF
78 76 77 eqtr3di FRRingHomSFBaseR=ranF
79 78 eqeq1d FRRingHomSFBaseR=BranF=B
80 79 biimpar FRRingHomSranF=BFBaseR=B
81 80 eleq2d FRRingHomSranF=BxFBaseRxB
82 81 biimpar FRRingHomSranF=BxBxFBaseR
83 82 adantlr FRRingHomSranF=BITxBxFBaseR
84 83 ad6antr FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=axFBaseR
85 fvelima FunFxFBaseRzBaseRFz=x
86 74 84 85 syl2anc FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=azBaseRFz=x
87 71 86 r19.29a FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=axSa+SbFI
88 73 ad5antr FRRingHomSranF=BITxBaFIbFIjIFj=bFunF
89 simp-4r FRRingHomSranF=BITxBaFIbFIjIFj=baFI
90 fvelima FunFaFIiIFi=a
91 88 89 90 syl2anc FRRingHomSranF=BITxBaFIbFIjIFj=biIFi=a
92 87 91 r19.29a FRRingHomSranF=BITxBaFIbFIjIFj=bxSa+SbFI
93 73 ad3antrrr FRRingHomSranF=BITxBaFIbFIFunF
94 simpr FRRingHomSranF=BITxBaFIbFIbFI
95 fvelima FunFbFIjIFj=b
96 93 94 95 syl2anc FRRingHomSranF=BITxBaFIbFIjIFj=b
97 92 96 r19.29a FRRingHomSranF=BITxBaFIbFIxSa+SbFI
98 97 anasss FRRingHomSranF=BITxBaFIbFIxSa+SbFI
99 98 ralrimivva FRRingHomSranF=BITxBaFIbFIxSa+SbFI
100 99 ralrimiva FRRingHomSranF=BITxBaFIbFIxSa+SbFI
101 3 1 35 39 islidl FIUFIBFIxBaFIbFIxSa+SbFI
102 8 20 100 101 syl3anbrc FRRingHomSranF=BITFIU
103 102 3impa FRRingHomSranF=BITFIU