Metamath Proof Explorer


Theorem ringcinvALTV

Description: An inverse in the category of rings is the converse operation. (Contributed by AV, 14-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses ringcsectALTV.c C=RingCatALTVU
ringcsectALTV.b B=BaseC
ringcsectALTV.u φUV
ringcsectALTV.x φXB
ringcsectALTV.y φYB
ringcinvALTV.n N=InvC
Assertion ringcinvALTV φFXNYGFXRingIsoYG=F-1

Proof

Step Hyp Ref Expression
1 ringcsectALTV.c C=RingCatALTVU
2 ringcsectALTV.b B=BaseC
3 ringcsectALTV.u φUV
4 ringcsectALTV.x φXB
5 ringcsectALTV.y φYB
6 ringcinvALTV.n N=InvC
7 1 ringccatALTV UVCCat
8 3 7 syl φCCat
9 eqid SectC=SectC
10 2 6 8 4 5 9 isinv φFXNYGFXSectCYGGYSectCXF
11 eqid BaseX=BaseX
12 1 2 3 4 5 11 9 ringcsectALTV φFXSectCYGFXRingHomYGYRingHomXGF=IBaseX
13 df-3an FXRingHomYGYRingHomXGF=IBaseXFXRingHomYGYRingHomXGF=IBaseX
14 12 13 bitrdi φFXSectCYGFXRingHomYGYRingHomXGF=IBaseX
15 eqid BaseY=BaseY
16 1 2 3 5 4 15 9 ringcsectALTV φGYSectCXFGYRingHomXFXRingHomYFG=IBaseY
17 3ancoma GYRingHomXFXRingHomYFG=IBaseYFXRingHomYGYRingHomXFG=IBaseY
18 df-3an FXRingHomYGYRingHomXFG=IBaseYFXRingHomYGYRingHomXFG=IBaseY
19 17 18 bitri GYRingHomXFXRingHomYFG=IBaseYFXRingHomYGYRingHomXFG=IBaseY
20 16 19 bitrdi φGYSectCXFFXRingHomYGYRingHomXFG=IBaseY
21 14 20 anbi12d φFXSectCYGGYSectCXFFXRingHomYGYRingHomXGF=IBaseXFXRingHomYGYRingHomXFG=IBaseY
22 anandi FXRingHomYGYRingHomXGF=IBaseXFXRingHomYGYRingHomXFG=IBaseYFXRingHomYGYRingHomXGF=IBaseXFXRingHomYGYRingHomXFXRingHomYGYRingHomXGF=IBaseXFG=IBaseY
23 21 22 bitrdi φFXSectCYGGYSectCXFFXRingHomYGYRingHomXGF=IBaseXFXRingHomYGYRingHomXFXRingHomYGYRingHomXGF=IBaseXFG=IBaseY
24 simplrl FXRingHomYGYRingHomXGF=IBaseXFXRingHomYGYRingHomXFXRingHomYGYRingHomXGF=IBaseXFG=IBaseYFXRingHomY
25 24 adantl φFXRingHomYGYRingHomXGF=IBaseXFXRingHomYGYRingHomXFXRingHomYGYRingHomXGF=IBaseXFG=IBaseYFXRingHomY
26 11 15 rhmf FXRingHomYF:BaseXBaseY
27 15 11 rhmf GYRingHomXG:BaseYBaseX
28 26 27 anim12i FXRingHomYGYRingHomXF:BaseXBaseYG:BaseYBaseX
29 28 ad2antlr FXRingHomYGYRingHomXGF=IBaseXFXRingHomYGYRingHomXFXRingHomYGYRingHomXGF=IBaseXFG=IBaseYF:BaseXBaseYG:BaseYBaseX
30 simpr FXRingHomYGYRingHomXGF=IBaseXFG=IBaseYFG=IBaseY
31 30 adantl FXRingHomYGYRingHomXGF=IBaseXFXRingHomYGYRingHomXFXRingHomYGYRingHomXGF=IBaseXFG=IBaseYFG=IBaseY
32 simpr FXRingHomYGYRingHomXGF=IBaseXGF=IBaseX
33 32 ad2antrl FXRingHomYGYRingHomXGF=IBaseXFXRingHomYGYRingHomXFXRingHomYGYRingHomXGF=IBaseXFG=IBaseYGF=IBaseX
34 29 31 33 jca32 FXRingHomYGYRingHomXGF=IBaseXFXRingHomYGYRingHomXFXRingHomYGYRingHomXGF=IBaseXFG=IBaseYF:BaseXBaseYG:BaseYBaseXFG=IBaseYGF=IBaseX
35 34 adantl φFXRingHomYGYRingHomXGF=IBaseXFXRingHomYGYRingHomXFXRingHomYGYRingHomXGF=IBaseXFG=IBaseYF:BaseXBaseYG:BaseYBaseXFG=IBaseYGF=IBaseX
36 fcof1o F:BaseXBaseYG:BaseYBaseXFG=IBaseYGF=IBaseXF:BaseX1-1 ontoBaseYF-1=G
37 eqcom F-1=GG=F-1
38 37 anbi2i F:BaseX1-1 ontoBaseYF-1=GF:BaseX1-1 ontoBaseYG=F-1
39 36 38 sylib F:BaseXBaseYG:BaseYBaseXFG=IBaseYGF=IBaseXF:BaseX1-1 ontoBaseYG=F-1
40 35 39 syl φFXRingHomYGYRingHomXGF=IBaseXFXRingHomYGYRingHomXFXRingHomYGYRingHomXGF=IBaseXFG=IBaseYF:BaseX1-1 ontoBaseYG=F-1
41 anass FXRingHomYF:BaseX1-1 ontoBaseYG=F-1FXRingHomYF:BaseX1-1 ontoBaseYG=F-1
42 25 40 41 sylanbrc φFXRingHomYGYRingHomXGF=IBaseXFXRingHomYGYRingHomXFXRingHomYGYRingHomXGF=IBaseXFG=IBaseYFXRingHomYF:BaseX1-1 ontoBaseYG=F-1
43 11 15 isrim FXRingIsoYFXRingHomYF:BaseX1-1 ontoBaseY
44 43 a1i φFXRingIsoYFXRingHomYF:BaseX1-1 ontoBaseY
45 44 anbi1d φFXRingIsoYG=F-1FXRingHomYF:BaseX1-1 ontoBaseYG=F-1
46 45 adantr φFXRingHomYGYRingHomXGF=IBaseXFXRingHomYGYRingHomXFXRingHomYGYRingHomXGF=IBaseXFG=IBaseYFXRingIsoYG=F-1FXRingHomYF:BaseX1-1 ontoBaseYG=F-1
47 42 46 mpbird φFXRingHomYGYRingHomXGF=IBaseXFXRingHomYGYRingHomXFXRingHomYGYRingHomXGF=IBaseXFG=IBaseYFXRingIsoYG=F-1
48 rimrhm FXRingIsoYFXRingHomY
49 48 ad2antrl φFXRingIsoYG=F-1FXRingHomY
50 isrim0 FXRingIsoYFXRingHomYF-1YRingHomX
51 50 simprbi FXRingIsoYF-1YRingHomX
52 eleq1 G=F-1GYRingHomXF-1YRingHomX
53 51 52 syl5ibrcom FXRingIsoYG=F-1GYRingHomX
54 53 imp FXRingIsoYG=F-1GYRingHomX
55 54 adantl φFXRingIsoYG=F-1GYRingHomX
56 coeq1 G=F-1GF=F-1F
57 56 ad2antll φFXRingIsoYG=F-1GF=F-1F
58 11 15 rimf1o FXRingIsoYF:BaseX1-1 ontoBaseY
59 58 ad2antrl φFXRingIsoYG=F-1F:BaseX1-1 ontoBaseY
60 f1ococnv1 F:BaseX1-1 ontoBaseYF-1F=IBaseX
61 59 60 syl φFXRingIsoYG=F-1F-1F=IBaseX
62 57 61 eqtrd φFXRingIsoYG=F-1GF=IBaseX
63 49 55 62 jca31 φFXRingIsoYG=F-1FXRingHomYGYRingHomXGF=IBaseX
64 50 biimpi FXRingIsoYFXRingHomYF-1YRingHomX
65 64 ad2antrl φFXRingIsoYG=F-1FXRingHomYF-1YRingHomX
66 52 ad2antll φFXRingIsoYG=F-1GYRingHomXF-1YRingHomX
67 66 anbi2d φFXRingIsoYG=F-1FXRingHomYGYRingHomXFXRingHomYF-1YRingHomX
68 65 67 mpbird φFXRingIsoYG=F-1FXRingHomYGYRingHomX
69 coeq2 G=F-1FG=FF-1
70 69 ad2antll φFXRingIsoYG=F-1FG=FF-1
71 f1ococnv2 F:BaseX1-1 ontoBaseYFF-1=IBaseY
72 59 71 syl φFXRingIsoYG=F-1FF-1=IBaseY
73 70 72 eqtrd φFXRingIsoYG=F-1FG=IBaseY
74 68 62 73 jca31 φFXRingIsoYG=F-1FXRingHomYGYRingHomXGF=IBaseXFG=IBaseY
75 63 68 74 jca31 φFXRingIsoYG=F-1FXRingHomYGYRingHomXGF=IBaseXFXRingHomYGYRingHomXFXRingHomYGYRingHomXGF=IBaseXFG=IBaseY
76 47 75 impbida φFXRingHomYGYRingHomXGF=IBaseXFXRingHomYGYRingHomXFXRingHomYGYRingHomXGF=IBaseXFG=IBaseYFXRingIsoYG=F-1
77 10 23 76 3bitrd φFXNYGFXRingIsoYG=F-1