Metamath Proof Explorer


Theorem rlimcld2

Description: If D is a closed set in the topology of the complex numbers (stated here in basic form), and all the elements of the sequence lie in D , then the limit of the sequence also lies in D . (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses rlimcld2.1 φsupA*<=+∞
rlimcld2.2 φxABC
rlimcld2.3 φD
rlimcld2.4 φyDR+
rlimcld2.5 φyDzDRzy
rlimcld2.6 φxABD
Assertion rlimcld2 φCD

Proof

Step Hyp Ref Expression
1 rlimcld2.1 φsupA*<=+∞
2 rlimcld2.2 φxABC
3 rlimcld2.3 φD
4 rlimcld2.4 φyDR+
5 rlimcld2.5 φyDzDRzy
6 rlimcld2.6 φxABD
7 6 ralrimiva φxABD
8 7 adantr φ¬CDxABD
9 2 adantr φ¬CDxABC
10 rlimcl xABCC
11 9 10 syl φ¬CDC
12 simpr φ¬CD¬CD
13 11 12 eldifd φ¬CDCD
14 4 ralrimiva φyDR+
15 14 adantr φ¬CDyDR+
16 nfcsb1v _yC/yR
17 16 nfel1 yC/yR+
18 csbeq1a y=CR=C/yR
19 18 eleq1d y=CR+C/yR+
20 17 19 rspc CDyDR+C/yR+
21 13 15 20 sylc φ¬CDC/yR+
22 8 21 9 rlimi φ¬CDrxArxBC<C/yR
23 21 ad2antrr φ¬CDrxAC/yR+
24 23 rpred φ¬CDrxAC/yR
25 3 ad3antrrr φ¬CDrxAD
26 6 ad4ant14 φ¬CDrxABD
27 25 26 sseldd φ¬CDrxAB
28 11 ad2antrr φ¬CDrxAC
29 27 28 subcld φ¬CDrxABC
30 29 abscld φ¬CDrxABC
31 5 ralrimiva φyDzDRzy
32 31 ralrimiva φyDzDRzy
33 32 adantr φ¬CDyDzDRzy
34 nfcv _yD
35 nfcv _y
36 nfcv _yzC
37 16 35 36 nfbr yC/yRzC
38 34 37 nfralw yzDC/yRzC
39 oveq2 y=Czy=zC
40 39 fveq2d y=Czy=zC
41 18 40 breq12d y=CRzyC/yRzC
42 41 ralbidv y=CzDRzyzDC/yRzC
43 38 42 rspc CDyDzDRzyzDC/yRzC
44 13 33 43 sylc φ¬CDzDC/yRzC
45 44 ad2antrr φ¬CDrxAzDC/yRzC
46 fvoveq1 z=BzC=BC
47 46 breq2d z=BC/yRzCC/yRBC
48 47 rspcv BDzDC/yRzCC/yRBC
49 26 45 48 sylc φ¬CDrxAC/yRBC
50 24 30 49 lensymd φ¬CDrxA¬BC<C/yR
51 id rxBC<C/yRrxBC<C/yR
52 51 imp rxBC<C/yRrxBC<C/yR
53 50 52 nsyl φ¬CDrxA¬rxBC<C/yRrx
54 53 nrexdv φ¬CDr¬xArxBC<C/yRrx
55 eqid xAB=xAB
56 55 6 dmmptd φdomxAB=A
57 rlimss xABCdomxAB
58 2 57 syl φdomxAB
59 56 58 eqsstrrd φA
60 ressxr *
61 59 60 sstrdi φA*
62 supxrunb1 A*rxArxsupA*<=+∞
63 61 62 syl φrxArxsupA*<=+∞
64 1 63 mpbird φrxArx
65 64 adantr φ¬CDrxArx
66 65 r19.21bi φ¬CDrxArx
67 r19.29 xArxBC<C/yRxArxxArxBC<C/yRrx
68 67 expcom xArxxArxBC<C/yRxArxBC<C/yRrx
69 66 68 syl φ¬CDrxArxBC<C/yRxArxBC<C/yRrx
70 54 69 mtod φ¬CDr¬xArxBC<C/yR
71 70 nrexdv φ¬CD¬rxArxBC<C/yR
72 22 71 condan φCD