Description: If D is a closed set in the topology of the complex numbers (stated here in basic form), and all the elements of the sequence lie in D , then the limit of the sequence also lies in D . (Contributed by Mario Carneiro, 10-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rlimcld2.1 | |
|
rlimcld2.2 | |
||
rlimcld2.3 | |
||
rlimcld2.4 | |
||
rlimcld2.5 | |
||
rlimcld2.6 | |
||
Assertion | rlimcld2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimcld2.1 | |
|
2 | rlimcld2.2 | |
|
3 | rlimcld2.3 | |
|
4 | rlimcld2.4 | |
|
5 | rlimcld2.5 | |
|
6 | rlimcld2.6 | |
|
7 | 6 | ralrimiva | |
8 | 7 | adantr | |
9 | 2 | adantr | |
10 | rlimcl | |
|
11 | 9 10 | syl | |
12 | simpr | |
|
13 | 11 12 | eldifd | |
14 | 4 | ralrimiva | |
15 | 14 | adantr | |
16 | nfcsb1v | |
|
17 | 16 | nfel1 | |
18 | csbeq1a | |
|
19 | 18 | eleq1d | |
20 | 17 19 | rspc | |
21 | 13 15 20 | sylc | |
22 | 8 21 9 | rlimi | |
23 | 21 | ad2antrr | |
24 | 23 | rpred | |
25 | 3 | ad3antrrr | |
26 | 6 | ad4ant14 | |
27 | 25 26 | sseldd | |
28 | 11 | ad2antrr | |
29 | 27 28 | subcld | |
30 | 29 | abscld | |
31 | 5 | ralrimiva | |
32 | 31 | ralrimiva | |
33 | 32 | adantr | |
34 | nfcv | |
|
35 | nfcv | |
|
36 | nfcv | |
|
37 | 16 35 36 | nfbr | |
38 | 34 37 | nfralw | |
39 | oveq2 | |
|
40 | 39 | fveq2d | |
41 | 18 40 | breq12d | |
42 | 41 | ralbidv | |
43 | 38 42 | rspc | |
44 | 13 33 43 | sylc | |
45 | 44 | ad2antrr | |
46 | fvoveq1 | |
|
47 | 46 | breq2d | |
48 | 47 | rspcv | |
49 | 26 45 48 | sylc | |
50 | 24 30 49 | lensymd | |
51 | id | |
|
52 | 51 | imp | |
53 | 50 52 | nsyl | |
54 | 53 | nrexdv | |
55 | eqid | |
|
56 | 55 6 | dmmptd | |
57 | rlimss | |
|
58 | 2 57 | syl | |
59 | 56 58 | eqsstrrd | |
60 | ressxr | |
|
61 | 59 60 | sstrdi | |
62 | supxrunb1 | |
|
63 | 61 62 | syl | |
64 | 1 63 | mpbird | |
65 | 64 | adantr | |
66 | 65 | r19.21bi | |
67 | r19.29 | |
|
68 | 67 | expcom | |
69 | 66 68 | syl | |
70 | 54 69 | mtod | |
71 | 70 | nrexdv | |
72 | 22 71 | condan | |