Metamath Proof Explorer


Theorem satefvfmla0

Description: The simplified satisfaction predicate for wff codes of height 0. (Contributed by AV, 4-Nov-2023)

Ref Expression
Assertion satefvfmla0 MVXFmlaMSatX=aMω|a1st2ndXa2nd2ndX

Proof

Step Hyp Ref Expression
1 satefv MVXFmlaMSatX=MSatEM×MωX
2 incom EM×M=M×ME
3 sqxpexg MVM×MV
4 inex1g M×MVM×MEV
5 3 4 syl MVM×MEV
6 2 5 eqeltrid MVEM×MV
7 6 ancli MVMVEM×MV
8 7 adantr MVXFmlaMVEM×MV
9 satom MVEM×MVMSatEM×Mω=iωMSatEM×Mi
10 8 9 syl MVXFmlaMSatEM×Mω=iωMSatEM×Mi
11 10 fveq1d MVXFmlaMSatEM×MωX=iωMSatEM×MiX
12 satfun MVEM×MVMSatEM×Mω:Fmlaω𝒫Mω
13 8 12 syl MVXFmlaMSatEM×Mω:Fmlaω𝒫Mω
14 13 ffund MVXFmlaFunMSatEM×Mω
15 10 eqcomd MVXFmlaiωMSatEM×Mi=MSatEM×Mω
16 15 funeqd MVXFmlaFuniωMSatEM×MiFunMSatEM×Mω
17 14 16 mpbird MVXFmlaFuniωMSatEM×Mi
18 peano1 ω
19 18 a1i MVXFmlaω
20 18 a1i MVω
21 satfdmfmla MVEM×MVωdomMSatEM×M=Fmla
22 6 20 21 mpd3an23 MVdomMSatEM×M=Fmla
23 22 eqcomd MVFmla=domMSatEM×M
24 23 eleq2d MVXFmlaXdomMSatEM×M
25 24 biimpa MVXFmlaXdomMSatEM×M
26 eqid iωMSatEM×Mi=iωMSatEM×Mi
27 26 fviunfun FuniωMSatEM×MiωXdomMSatEM×MiωMSatEM×MiX=MSatEM×MX
28 17 19 25 27 syl3anc MVXFmlaiωMSatEM×MiX=MSatEM×MX
29 11 28 eqtrd MVXFmlaMSatEM×MωX=MSatEM×MX
30 simpl MVXFmlaMV
31 6 adantr MVXFmlaEM×MV
32 simpr MVXFmlaXFmla
33 eqid MSatEM×M=MSatEM×M
34 33 satfv0fvfmla0 MVEM×MVXFmlaMSatEM×MX=aMω|a1st2ndXEM×Ma2nd2ndX
35 30 31 32 34 syl3anc MVXFmlaMSatEM×MX=aMω|a1st2ndXEM×Ma2nd2ndX
36 elmapi aMωa:ωM
37 simpl a:ωMMVXFmlaa:ωM
38 fmla0xp Fmla=×ω×ω
39 38 eleq2i XFmlaX×ω×ω
40 elxp X×ω×ωxyX=xyxyω×ω
41 39 40 bitri XFmlaxyX=xyxyω×ω
42 xp1st yω×ω1styω
43 42 ad2antll X=xyxyω×ω1styω
44 vex xV
45 vex yV
46 44 45 op2ndd X=xy2ndX=y
47 46 fveq2d X=xy1st2ndX=1sty
48 47 eleq1d X=xy1st2ndXω1styω
49 48 adantr X=xyxyω×ω1st2ndXω1styω
50 43 49 mpbird X=xyxyω×ω1st2ndXω
51 50 exlimivv xyX=xyxyω×ω1st2ndXω
52 41 51 sylbi XFmla1st2ndXω
53 52 ad2antll a:ωMMVXFmla1st2ndXω
54 37 53 ffvelcdmd a:ωMMVXFmlaa1st2ndXM
55 xp2nd yω×ω2ndyω
56 55 ad2antll X=xyxyω×ω2ndyω
57 46 fveq2d X=xy2nd2ndX=2ndy
58 57 eleq1d X=xy2nd2ndXω2ndyω
59 58 adantr X=xyxyω×ω2nd2ndXω2ndyω
60 56 59 mpbird X=xyxyω×ω2nd2ndXω
61 60 exlimivv xyX=xyxyω×ω2nd2ndXω
62 41 61 sylbi XFmla2nd2ndXω
63 62 ad2antll a:ωMMVXFmla2nd2ndXω
64 37 63 ffvelcdmd a:ωMMVXFmlaa2nd2ndXM
65 54 64 jca a:ωMMVXFmlaa1st2ndXMa2nd2ndXM
66 65 ex a:ωMMVXFmlaa1st2ndXMa2nd2ndXM
67 36 66 syl aMωMVXFmlaa1st2ndXMa2nd2ndXM
68 67 impcom MVXFmlaaMωa1st2ndXMa2nd2ndXM
69 brinxp a1st2ndXMa2nd2ndXMa1st2ndXEa2nd2ndXa1st2ndXEM×Ma2nd2ndX
70 69 bicomd a1st2ndXMa2nd2ndXMa1st2ndXEM×Ma2nd2ndXa1st2ndXEa2nd2ndX
71 68 70 syl MVXFmlaaMωa1st2ndXEM×Ma2nd2ndXa1st2ndXEa2nd2ndX
72 fvex a2nd2ndXV
73 72 epeli a1st2ndXEa2nd2ndXa1st2ndXa2nd2ndX
74 71 73 bitrdi MVXFmlaaMωa1st2ndXEM×Ma2nd2ndXa1st2ndXa2nd2ndX
75 74 rabbidva MVXFmlaaMω|a1st2ndXEM×Ma2nd2ndX=aMω|a1st2ndXa2nd2ndX
76 35 75 eqtrd MVXFmlaMSatEM×MX=aMω|a1st2ndXa2nd2ndX
77 29 76 eqtrd MVXFmlaMSatEM×MωX=aMω|a1st2ndXa2nd2ndX
78 1 77 eqtrd MVXFmlaMSatX=aMω|a1st2ndXa2nd2ndX