| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scmatrhmval.k |
|
| 2 |
|
scmatrhmval.a |
|
| 3 |
|
scmatrhmval.o |
|
| 4 |
|
scmatrhmval.t |
|
| 5 |
|
scmatrhmval.f |
|
| 6 |
|
scmatrhmval.c |
|
| 7 |
|
scmatghm.s |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
ringgrp |
|
| 12 |
11
|
adantl |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
2 13 1 14 6
|
scmatsgrp |
|
| 16 |
7
|
subggrp |
|
| 17 |
15 16
|
syl |
|
| 18 |
1 2 3 4 5 6
|
scmatf |
|
| 19 |
2 6 7
|
scmatstrbas |
|
| 20 |
19
|
feq3d |
|
| 21 |
18 20
|
mpbird |
|
| 22 |
2
|
matsca2 |
|
| 23 |
6
|
ovexi |
|
| 24 |
|
eqid |
|
| 25 |
7 24
|
resssca |
|
| 26 |
23 25
|
mp1i |
|
| 27 |
22 26
|
eqtrd |
|
| 28 |
27
|
fveq2d |
|
| 29 |
28
|
oveqd |
|
| 30 |
29
|
oveq1d |
|
| 31 |
30
|
adantr |
|
| 32 |
2
|
matlmod |
|
| 33 |
2 6
|
scmatlss |
|
| 34 |
|
eqid |
|
| 35 |
7 34
|
lsslmod |
|
| 36 |
32 33 35
|
syl2anc |
|
| 37 |
36
|
adantr |
|
| 38 |
27
|
fveq2d |
|
| 39 |
1 38
|
eqtrid |
|
| 40 |
39
|
eleq2d |
|
| 41 |
40
|
biimpd |
|
| 42 |
41
|
adantrd |
|
| 43 |
42
|
imp |
|
| 44 |
39
|
eleq2d |
|
| 45 |
44
|
biimpd |
|
| 46 |
45
|
adantld |
|
| 47 |
46
|
imp |
|
| 48 |
2 13 1 14 6
|
scmatid |
|
| 49 |
3
|
a1i |
|
| 50 |
48 49 19
|
3eltr4d |
|
| 51 |
50
|
adantr |
|
| 52 |
|
eqid |
|
| 53 |
7 4
|
ressvsca |
|
| 54 |
23 53
|
ax-mp |
|
| 55 |
|
eqid |
|
| 56 |
|
eqid |
|
| 57 |
8 10 52 54 55 56
|
lmodvsdir |
|
| 58 |
37 43 47 51 57
|
syl13anc |
|
| 59 |
31 58
|
eqtrd |
|
| 60 |
|
simpr |
|
| 61 |
60
|
adantr |
|
| 62 |
60
|
anim1i |
|
| 63 |
|
3anass |
|
| 64 |
62 63
|
sylibr |
|
| 65 |
1 9
|
ringacl |
|
| 66 |
64 65
|
syl |
|
| 67 |
1 2 3 4 5
|
scmatrhmval |
|
| 68 |
61 66 67
|
syl2anc |
|
| 69 |
1 2 3 4 5
|
scmatrhmval |
|
| 70 |
69
|
ad2ant2lr |
|
| 71 |
1 2 3 4 5
|
scmatrhmval |
|
| 72 |
71
|
ad2ant2l |
|
| 73 |
70 72
|
oveq12d |
|
| 74 |
59 68 73
|
3eqtr4d |
|
| 75 |
1 8 9 10 12 17 21 74
|
isghmd |
|