Metamath Proof Explorer


Theorem scmatghm

Description: There is a group homomorphism from the additive group of a ring to the additive group of the ring of scalar matrices over this ring. (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k K=BaseR
scmatrhmval.a A=NMatR
scmatrhmval.o 1˙=1A
scmatrhmval.t ˙=A
scmatrhmval.f F=xKx˙1˙
scmatrhmval.c C=NScMatR
scmatghm.s S=A𝑠C
Assertion scmatghm NFinRRingFRGrpHomS

Proof

Step Hyp Ref Expression
1 scmatrhmval.k K=BaseR
2 scmatrhmval.a A=NMatR
3 scmatrhmval.o 1˙=1A
4 scmatrhmval.t ˙=A
5 scmatrhmval.f F=xKx˙1˙
6 scmatrhmval.c C=NScMatR
7 scmatghm.s S=A𝑠C
8 eqid BaseS=BaseS
9 eqid +R=+R
10 eqid +S=+S
11 ringgrp RRingRGrp
12 11 adantl NFinRRingRGrp
13 eqid BaseA=BaseA
14 eqid 0R=0R
15 2 13 1 14 6 scmatsgrp NFinRRingCSubGrpA
16 7 subggrp CSubGrpASGrp
17 15 16 syl NFinRRingSGrp
18 1 2 3 4 5 6 scmatf NFinRRingF:KC
19 2 6 7 scmatstrbas NFinRRingBaseS=C
20 19 feq3d NFinRRingF:KBaseSF:KC
21 18 20 mpbird NFinRRingF:KBaseS
22 2 matsca2 NFinRRingR=ScalarA
23 6 ovexi CV
24 eqid ScalarA=ScalarA
25 7 24 resssca CVScalarA=ScalarS
26 23 25 mp1i NFinRRingScalarA=ScalarS
27 22 26 eqtrd NFinRRingR=ScalarS
28 27 fveq2d NFinRRing+R=+ScalarS
29 28 oveqd NFinRRingy+Rz=y+ScalarSz
30 29 oveq1d NFinRRingy+Rz˙1˙=y+ScalarSz˙1˙
31 30 adantr NFinRRingyKzKy+Rz˙1˙=y+ScalarSz˙1˙
32 2 matlmod NFinRRingALMod
33 2 6 scmatlss NFinRRingCLSubSpA
34 eqid LSubSpA=LSubSpA
35 7 34 lsslmod ALModCLSubSpASLMod
36 32 33 35 syl2anc NFinRRingSLMod
37 36 adantr NFinRRingyKzKSLMod
38 27 fveq2d NFinRRingBaseR=BaseScalarS
39 1 38 eqtrid NFinRRingK=BaseScalarS
40 39 eleq2d NFinRRingyKyBaseScalarS
41 40 biimpd NFinRRingyKyBaseScalarS
42 41 adantrd NFinRRingyKzKyBaseScalarS
43 42 imp NFinRRingyKzKyBaseScalarS
44 39 eleq2d NFinRRingzKzBaseScalarS
45 44 biimpd NFinRRingzKzBaseScalarS
46 45 adantld NFinRRingyKzKzBaseScalarS
47 46 imp NFinRRingyKzKzBaseScalarS
48 2 13 1 14 6 scmatid NFinRRing1AC
49 3 a1i NFinRRing1˙=1A
50 48 49 19 3eltr4d NFinRRing1˙BaseS
51 50 adantr NFinRRingyKzK1˙BaseS
52 eqid ScalarS=ScalarS
53 7 4 ressvsca CV˙=S
54 23 53 ax-mp ˙=S
55 eqid BaseScalarS=BaseScalarS
56 eqid +ScalarS=+ScalarS
57 8 10 52 54 55 56 lmodvsdir SLModyBaseScalarSzBaseScalarS1˙BaseSy+ScalarSz˙1˙=y˙1˙+Sz˙1˙
58 37 43 47 51 57 syl13anc NFinRRingyKzKy+ScalarSz˙1˙=y˙1˙+Sz˙1˙
59 31 58 eqtrd NFinRRingyKzKy+Rz˙1˙=y˙1˙+Sz˙1˙
60 simpr NFinRRingRRing
61 60 adantr NFinRRingyKzKRRing
62 60 anim1i NFinRRingyKzKRRingyKzK
63 3anass RRingyKzKRRingyKzK
64 62 63 sylibr NFinRRingyKzKRRingyKzK
65 1 9 ringacl RRingyKzKy+RzK
66 64 65 syl NFinRRingyKzKy+RzK
67 1 2 3 4 5 scmatrhmval RRingy+RzKFy+Rz=y+Rz˙1˙
68 61 66 67 syl2anc NFinRRingyKzKFy+Rz=y+Rz˙1˙
69 1 2 3 4 5 scmatrhmval RRingyKFy=y˙1˙
70 69 ad2ant2lr NFinRRingyKzKFy=y˙1˙
71 1 2 3 4 5 scmatrhmval RRingzKFz=z˙1˙
72 71 ad2ant2l NFinRRingyKzKFz=z˙1˙
73 70 72 oveq12d NFinRRingyKzKFy+SFz=y˙1˙+Sz˙1˙
74 59 68 73 3eqtr4d NFinRRingyKzKFy+Rz=Fy+SFz
75 1 8 9 10 12 17 21 74 isghmd NFinRRingFRGrpHomS