Metamath Proof Explorer


Theorem scmatscm

Description: The multiplication of a matrix with a scalar matrix corresponds to a scalar multiplication. (Contributed by AV, 28-Dec-2019)

Ref Expression
Hypotheses scmatscm.k K = Base R
scmatscm.a A = N Mat R
scmatscm.b B = Base A
scmatscm.t ˙ = A
scmatscm.m × ˙ = A
scmatscm.c S = N ScMat R
Assertion scmatscm N Fin R Ring C S c K m B C × ˙ m = c ˙ m

Proof

Step Hyp Ref Expression
1 scmatscm.k K = Base R
2 scmatscm.a A = N Mat R
3 scmatscm.b B = Base A
4 scmatscm.t ˙ = A
5 scmatscm.m × ˙ = A
6 scmatscm.c S = N ScMat R
7 eqid 1 A = 1 A
8 1 2 3 7 4 6 scmatscmid N Fin R Ring C S c K C = c ˙ 1 A
9 8 3expa N Fin R Ring C S c K C = c ˙ 1 A
10 oveq1 C = c ˙ 1 A C × ˙ m = c ˙ 1 A × ˙ m
11 simpr N Fin R Ring R Ring
12 11 ad4antr N Fin R Ring C S c K m B i N j N R Ring
13 simpl N Fin R Ring C S N Fin R Ring
14 13 adantr N Fin R Ring C S c K N Fin R Ring
15 2 matring N Fin R Ring A Ring
16 3 7 ringidcl A Ring 1 A B
17 15 16 syl N Fin R Ring 1 A B
18 17 adantr N Fin R Ring C S 1 A B
19 18 anim1ci N Fin R Ring C S c K c K 1 A B
20 1 2 3 4 matvscl N Fin R Ring c K 1 A B c ˙ 1 A B
21 14 19 20 syl2anc N Fin R Ring C S c K c ˙ 1 A B
22 21 anim1i N Fin R Ring C S c K m B c ˙ 1 A B m B
23 22 adantr N Fin R Ring C S c K m B i N j N c ˙ 1 A B m B
24 simpr N Fin R Ring C S c K m B i N j N i N j N
25 2 3 5 matmulcell R Ring c ˙ 1 A B m B i N j N i c ˙ 1 A × ˙ m j = R k N i c ˙ 1 A k R k m j
26 12 23 24 25 syl3anc N Fin R Ring C S c K m B i N j N i c ˙ 1 A × ˙ m j = R k N i c ˙ 1 A k R k m j
27 13 anim1i N Fin R Ring C S c K N Fin R Ring c K
28 df-3an N Fin R Ring c K N Fin R Ring c K
29 27 28 sylibr N Fin R Ring C S c K N Fin R Ring c K
30 29 ad3antrrr N Fin R Ring C S c K m B i N j N k N N Fin R Ring c K
31 eqid 0 R = 0 R
32 2 1 4 31 matsc N Fin R Ring c K c ˙ 1 A = x N , y N if x = y c 0 R
33 30 32 syl N Fin R Ring C S c K m B i N j N k N c ˙ 1 A = x N , y N if x = y c 0 R
34 eqeq12 x = i y = k x = y i = k
35 34 ifbid x = i y = k if x = y c 0 R = if i = k c 0 R
36 35 adantl N Fin R Ring C S c K m B i N j N k N x = i y = k if x = y c 0 R = if i = k c 0 R
37 simpl i N j N i N
38 37 adantl N Fin R Ring C S c K m B i N j N i N
39 38 adantr N Fin R Ring C S c K m B i N j N k N i N
40 simpr N Fin R Ring C S c K m B i N j N k N k N
41 vex c V
42 fvex 0 R V
43 41 42 ifex if i = k c 0 R V
44 43 a1i N Fin R Ring C S c K m B i N j N k N if i = k c 0 R V
45 33 36 39 40 44 ovmpod N Fin R Ring C S c K m B i N j N k N i c ˙ 1 A k = if i = k c 0 R
46 45 oveq1d N Fin R Ring C S c K m B i N j N k N i c ˙ 1 A k R k m j = if i = k c 0 R R k m j
47 46 mpteq2dva N Fin R Ring C S c K m B i N j N k N i c ˙ 1 A k R k m j = k N if i = k c 0 R R k m j
48 47 oveq2d N Fin R Ring C S c K m B i N j N R k N i c ˙ 1 A k R k m j = R k N if i = k c 0 R R k m j
49 ovif if i = k c 0 R R k m j = if i = k c R k m j 0 R R k m j
50 simp-6r N Fin R Ring C S c K m B i N j N k N R Ring
51 simplrr N Fin R Ring C S c K m B i N j N k N j N
52 simpr N Fin R Ring C S c K m B m B
53 52 ad2antrr N Fin R Ring C S c K m B i N j N k N m B
54 2 1 3 40 51 53 matecld N Fin R Ring C S c K m B i N j N k N k m j K
55 eqid R = R
56 1 55 31 ringlz R Ring k m j K 0 R R k m j = 0 R
57 50 54 56 syl2anc N Fin R Ring C S c K m B i N j N k N 0 R R k m j = 0 R
58 57 ifeq2d N Fin R Ring C S c K m B i N j N k N if i = k c R k m j 0 R R k m j = if i = k c R k m j 0 R
59 49 58 syl5eq N Fin R Ring C S c K m B i N j N k N if i = k c 0 R R k m j = if i = k c R k m j 0 R
60 59 mpteq2dva N Fin R Ring C S c K m B i N j N k N if i = k c 0 R R k m j = k N if i = k c R k m j 0 R
61 60 oveq2d N Fin R Ring C S c K m B i N j N R k N if i = k c 0 R R k m j = R k N if i = k c R k m j 0 R
62 ringmnd R Ring R Mnd
63 62 adantl N Fin R Ring R Mnd
64 63 ad4antr N Fin R Ring C S c K m B i N j N R Mnd
65 simpl N Fin R Ring N Fin
66 65 ad4antr N Fin R Ring C S c K m B i N j N N Fin
67 equcom i = k k = i
68 ifbi i = k k = i if i = k c R k m j 0 R = if k = i c R k m j 0 R
69 67 68 ax-mp if i = k c R k m j 0 R = if k = i c R k m j 0 R
70 69 mpteq2i k N if i = k c R k m j 0 R = k N if k = i c R k m j 0 R
71 1 eleq2i c K c Base R
72 71 biimpi c K c Base R
73 72 adantl N Fin R Ring C S c K c Base R
74 73 ad3antrrr N Fin R Ring C S c K m B i N j N k N c Base R
75 eqid Base R = Base R
76 2 75 3 40 51 53 matecld N Fin R Ring C S c K m B i N j N k N k m j Base R
77 75 55 ringcl R Ring c Base R k m j Base R c R k m j Base R
78 50 74 76 77 syl3anc N Fin R Ring C S c K m B i N j N k N c R k m j Base R
79 78 ralrimiva N Fin R Ring C S c K m B i N j N k N c R k m j Base R
80 31 64 66 38 70 79 gsummpt1n0 N Fin R Ring C S c K m B i N j N R k N if i = k c R k m j 0 R = i / k c R k m j
81 48 61 80 3eqtrd N Fin R Ring C S c K m B i N j N R k N i c ˙ 1 A k R k m j = i / k c R k m j
82 csbov2g i N i / k c R k m j = c R i / k k m j
83 csbov1g i N i / k k m j = i / k k m j
84 csbvarg i N i / k k = i
85 84 oveq1d i N i / k k m j = i m j
86 83 85 eqtrd i N i / k k m j = i m j
87 86 oveq2d i N c R i / k k m j = c R i m j
88 82 87 eqtrd i N i / k c R k m j = c R i m j
89 88 adantr i N j N i / k c R k m j = c R i m j
90 89 adantl N Fin R Ring C S c K m B i N j N i / k c R k m j = c R i m j
91 26 81 90 3eqtrd N Fin R Ring C S c K m B i N j N i c ˙ 1 A × ˙ m j = c R i m j
92 simpr N Fin R Ring C S c K c K
93 92 anim1i N Fin R Ring C S c K m B c K m B
94 93 adantr N Fin R Ring C S c K m B i N j N c K m B
95 2 3 1 4 55 matvscacell R Ring c K m B i N j N i c ˙ m j = c R i m j
96 12 94 24 95 syl3anc N Fin R Ring C S c K m B i N j N i c ˙ m j = c R i m j
97 91 96 eqtr4d N Fin R Ring C S c K m B i N j N i c ˙ 1 A × ˙ m j = i c ˙ m j
98 97 ralrimivva N Fin R Ring C S c K m B i N j N i c ˙ 1 A × ˙ m j = i c ˙ m j
99 15 ad3antrrr N Fin R Ring C S c K m B A Ring
100 21 adantr N Fin R Ring C S c K m B c ˙ 1 A B
101 3 5 ringcl A Ring c ˙ 1 A B m B c ˙ 1 A × ˙ m B
102 99 100 52 101 syl3anc N Fin R Ring C S c K m B c ˙ 1 A × ˙ m B
103 13 ad2antrr N Fin R Ring C S c K m B N Fin R Ring
104 1 2 3 4 matvscl N Fin R Ring c K m B c ˙ m B
105 103 93 104 syl2anc N Fin R Ring C S c K m B c ˙ m B
106 2 3 eqmat c ˙ 1 A × ˙ m B c ˙ m B c ˙ 1 A × ˙ m = c ˙ m i N j N i c ˙ 1 A × ˙ m j = i c ˙ m j
107 102 105 106 syl2anc N Fin R Ring C S c K m B c ˙ 1 A × ˙ m = c ˙ m i N j N i c ˙ 1 A × ˙ m j = i c ˙ m j
108 98 107 mpbird N Fin R Ring C S c K m B c ˙ 1 A × ˙ m = c ˙ m
109 10 108 sylan9eqr N Fin R Ring C S c K m B C = c ˙ 1 A C × ˙ m = c ˙ m
110 109 ex N Fin R Ring C S c K m B C = c ˙ 1 A C × ˙ m = c ˙ m
111 110 ralrimdva N Fin R Ring C S c K C = c ˙ 1 A m B C × ˙ m = c ˙ m
112 111 reximdva N Fin R Ring C S c K C = c ˙ 1 A c K m B C × ˙ m = c ˙ m
113 9 112 mpd N Fin R Ring C S c K m B C × ˙ m = c ˙ m