Metamath Proof Explorer


Theorem selberg2b

Description: Convert eventual boundedness in selberg2 to boundedness on any interval [ A , +oo ) . (We have to bound away from zero because the log terms diverge at zero.) (Contributed by Mario Carneiro, 25-May-2016)

Ref Expression
Assertion selberg2b c+x1+∞ψxlogx+n=1xΛnψxnx2logxc

Proof

Step Hyp Ref Expression
1 1re 1
2 elicopnf 1x1+∞x1x
3 1 2 mp1i x1+∞x1x
4 3 simprbda x1+∞x
5 4 ex x1+∞x
6 5 ssrdv 1+∞
7 1 a1i 1
8 chpcl xψx
9 4 8 syl x1+∞ψx
10 1rp 1+
11 10 a1i x1+∞1+
12 3 simplbda x1+∞1x
13 4 11 12 rpgecld x1+∞x+
14 13 relogcld x1+∞logx
15 9 14 remulcld x1+∞ψxlogx
16 fzfid x1+∞1xFin
17 elfznn n1xn
18 17 adantl x1+∞n1xn
19 vmacl nΛn
20 18 19 syl x1+∞n1xΛn
21 4 adantr x1+∞n1xx
22 21 18 nndivred x1+∞n1xxn
23 chpcl xnψxn
24 22 23 syl x1+∞n1xψxn
25 20 24 remulcld x1+∞n1xΛnψxn
26 16 25 fsumrecl x1+∞n=1xΛnψxn
27 15 26 readdcld x1+∞ψxlogx+n=1xΛnψxn
28 27 13 rerpdivcld x1+∞ψxlogx+n=1xΛnψxnx
29 2re 2
30 29 a1i x1+∞2
31 30 14 remulcld x1+∞2logx
32 28 31 resubcld x1+∞ψxlogx+n=1xΛnψxnx2logx
33 32 recnd x1+∞ψxlogx+n=1xΛnψxnx2logx
34 13 ex x1+∞x+
35 34 ssrdv 1+∞+
36 selberg2 x+ψxlogx+n=1xΛnψxnx2logx𝑂1
37 36 a1i x+ψxlogx+n=1xΛnψxnx2logx𝑂1
38 35 37 o1res2 x1+∞ψxlogx+n=1xΛnψxnx2logx𝑂1
39 chpcl yψy
40 39 ad2antrl y1yψy
41 simprl y1yy
42 10 a1i y1y1+
43 simprr y1y1y
44 41 42 43 rpgecld y1yy+
45 44 relogcld y1ylogy
46 40 45 remulcld y1yψylogy
47 fzfid y1y1yFin
48 elfznn n1yn
49 48 adantl y1yn1yn
50 49 19 syl y1yn1yΛn
51 41 adantr y1yn1yy
52 51 49 nndivred y1yn1yyn
53 chpcl ynψyn
54 52 53 syl y1yn1yψyn
55 50 54 remulcld y1yn1yΛnψyn
56 47 55 fsumrecl y1yn=1yΛnψyn
57 46 56 readdcld y1yψylogy+n=1yΛnψyn
58 29 a1i y1y2
59 58 45 remulcld y1y2logy
60 57 59 readdcld y1yψylogy+n=1yΛnψyn+2logy
61 32 adantr x1+∞y1yx<yψxlogx+n=1xΛnψxnx2logx
62 61 recnd x1+∞y1yx<yψxlogx+n=1xΛnψxnx2logx
63 62 abscld x1+∞y1yx<yψxlogx+n=1xΛnψxnx2logx
64 28 adantr x1+∞y1yx<yψxlogx+n=1xΛnψxnx
65 64 recnd x1+∞y1yx<yψxlogx+n=1xΛnψxnx
66 65 abscld x1+∞y1yx<yψxlogx+n=1xΛnψxnx
67 31 adantr x1+∞y1yx<y2logx
68 67 recnd x1+∞y1yx<y2logx
69 68 abscld x1+∞y1yx<y2logx
70 66 69 readdcld x1+∞y1yx<yψxlogx+n=1xΛnψxnx+2logx
71 60 ad2ant2r x1+∞y1yx<yψylogy+n=1yΛnψyn+2logy
72 65 68 abs2dif2d x1+∞y1yx<yψxlogx+n=1xΛnψxnx2logxψxlogx+n=1xΛnψxnx+2logx
73 simprll x1+∞y1yx<yy
74 73 39 syl x1+∞y1yx<yψy
75 13 adantr x1+∞y1yx<yx+
76 4 adantr x1+∞y1yx<yx
77 simprr x1+∞y1yx<yx<y
78 76 73 77 ltled x1+∞y1yx<yxy
79 73 75 78 rpgecld x1+∞y1yx<yy+
80 79 relogcld x1+∞y1yx<ylogy
81 74 80 remulcld x1+∞y1yx<yψylogy
82 56 ad2ant2r x1+∞y1yx<yn=1yΛnψyn
83 81 82 readdcld x1+∞y1yx<yψylogy+n=1yΛnψyn
84 29 a1i x1+∞y1yx<y2
85 84 80 remulcld x1+∞y1yx<y2logy
86 76 8 syl x1+∞y1yx<yψx
87 75 relogcld x1+∞y1yx<ylogx
88 86 87 remulcld x1+∞y1yx<yψxlogx
89 26 adantr x1+∞y1yx<yn=1xΛnψxn
90 88 89 readdcld x1+∞y1yx<yψxlogx+n=1xΛnψxn
91 chpge0 x0ψx
92 76 91 syl x1+∞y1yx<y0ψx
93 12 adantr x1+∞y1yx<y1x
94 76 93 logge0d x1+∞y1yx<y0logx
95 86 87 92 94 mulge0d x1+∞y1yx<y0ψxlogx
96 vmage0 n0Λn
97 18 96 syl x1+∞n1x0Λn
98 chpge0 xn0ψxn
99 22 98 syl x1+∞n1x0ψxn
100 20 24 97 99 mulge0d x1+∞n1x0Λnψxn
101 16 25 100 fsumge0 x1+∞0n=1xΛnψxn
102 101 adantr x1+∞y1yx<y0n=1xΛnψxn
103 88 89 95 102 addge0d x1+∞y1yx<y0ψxlogx+n=1xΛnψxn
104 90 75 103 divge0d x1+∞y1yx<y0ψxlogx+n=1xΛnψxnx
105 64 104 absidd x1+∞y1yx<yψxlogx+n=1xΛnψxnx=ψxlogx+n=1xΛnψxnx
106 10 a1i x1+∞y1yx<y1+
107 chpwordi xyxyψxψy
108 76 73 78 107 syl3anc x1+∞y1yx<yψxψy
109 75 79 logled x1+∞y1yx<yxylogxlogy
110 78 109 mpbid x1+∞y1yx<ylogxlogy
111 86 74 87 80 92 94 108 110 lemul12ad x1+∞y1yx<yψxlogxψylogy
112 fzfid x1+∞y1yx<y1yFin
113 48 adantl x1+∞y1yx<yn1yn
114 113 19 syl x1+∞y1yx<yn1yΛn
115 76 adantr x1+∞y1yx<yn1yx
116 115 113 nndivred x1+∞y1yx<yn1yxn
117 116 23 syl x1+∞y1yx<yn1yψxn
118 114 117 remulcld x1+∞y1yx<yn1yΛnψxn
119 112 118 fsumrecl x1+∞y1yx<yn=1yΛnψxn
120 113 96 syl x1+∞y1yx<yn1y0Λn
121 116 98 syl x1+∞y1yx<yn1y0ψxn
122 114 117 120 121 mulge0d x1+∞y1yx<yn1y0Λnψxn
123 flword2 xyxyyx
124 76 73 78 123 syl3anc x1+∞y1yx<yyx
125 fzss2 yx1x1y
126 124 125 syl x1+∞y1yx<y1x1y
127 112 118 122 126 fsumless x1+∞y1yx<yn=1xΛnψxnn=1yΛnψxn
128 73 adantr x1+∞y1yx<yn1yy
129 128 113 nndivred x1+∞y1yx<yn1yyn
130 129 53 syl x1+∞y1yx<yn1yψyn
131 114 130 remulcld x1+∞y1yx<yn1yΛnψyn
132 113 nnrpd x1+∞y1yx<yn1yn+
133 78 adantr x1+∞y1yx<yn1yxy
134 115 128 132 133 lediv1dd x1+∞y1yx<yn1yxnyn
135 chpwordi xnynxnynψxnψyn
136 116 129 134 135 syl3anc x1+∞y1yx<yn1yψxnψyn
137 117 130 114 120 136 lemul2ad x1+∞y1yx<yn1yΛnψxnΛnψyn
138 112 118 131 137 fsumle x1+∞y1yx<yn=1yΛnψxnn=1yΛnψyn
139 89 119 82 127 138 letrd x1+∞y1yx<yn=1xΛnψxnn=1yΛnψyn
140 88 89 81 82 111 139 le2addd x1+∞y1yx<yψxlogx+n=1xΛnψxnψylogy+n=1yΛnψyn
141 90 83 106 76 103 140 93 lediv12ad x1+∞y1yx<yψxlogx+n=1xΛnψxnxψylogy+n=1yΛnψyn1
142 83 recnd x1+∞y1yx<yψylogy+n=1yΛnψyn
143 142 div1d x1+∞y1yx<yψylogy+n=1yΛnψyn1=ψylogy+n=1yΛnψyn
144 141 143 breqtrd x1+∞y1yx<yψxlogx+n=1xΛnψxnxψylogy+n=1yΛnψyn
145 105 144 eqbrtrd x1+∞y1yx<yψxlogx+n=1xΛnψxnxψylogy+n=1yΛnψyn
146 2rp 2+
147 rpge0 2+02
148 146 147 mp1i x1+∞y1yx<y02
149 84 87 148 94 mulge0d x1+∞y1yx<y02logx
150 67 149 absidd x1+∞y1yx<y2logx=2logx
151 87 80 84 148 110 lemul2ad x1+∞y1yx<y2logx2logy
152 150 151 eqbrtrd x1+∞y1yx<y2logx2logy
153 66 69 83 85 145 152 le2addd x1+∞y1yx<yψxlogx+n=1xΛnψxnx+2logxψylogy+n=1yΛnψyn+2logy
154 63 70 71 72 153 letrd x1+∞y1yx<yψxlogx+n=1xΛnψxnx2logxψylogy+n=1yΛnψyn+2logy
155 6 7 33 38 60 154 o1bddrp c+x1+∞ψxlogx+n=1xΛnψxnx2logxc
156 155 mptru c+x1+∞ψxlogx+n=1xΛnψxnx2logxc