Metamath Proof Explorer


Theorem sge0xadd

Description: The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0xadd.kph k φ
sge0xadd.a φ A V
sge0xadd.b φ k A B 0 +∞
sge0xadd.c φ k A C 0 +∞
Assertion sge0xadd φ sum^ k A B + 𝑒 C = sum^ k A B + 𝑒 sum^ k A C

Proof

Step Hyp Ref Expression
1 sge0xadd.kph k φ
2 sge0xadd.a φ A V
3 sge0xadd.b φ k A B 0 +∞
4 sge0xadd.c φ k A C 0 +∞
5 simpr φ sum^ k A B = +∞ sum^ k A B = +∞
6 5 oveq1d φ sum^ k A B = +∞ sum^ k A B + 𝑒 sum^ k A C = +∞ + 𝑒 sum^ k A C
7 1 2 4 sge0xrclmpt φ sum^ k A C *
8 eqid k A C = k A C
9 1 4 8 fmptdf φ k A C : A 0 +∞
10 2 9 sge0nemnf φ sum^ k A C −∞
11 xaddpnf2 sum^ k A C * sum^ k A C −∞ +∞ + 𝑒 sum^ k A C = +∞
12 7 10 11 syl2anc φ +∞ + 𝑒 sum^ k A C = +∞
13 12 adantr φ sum^ k A B = +∞ +∞ + 𝑒 sum^ k A C = +∞
14 ge0xaddcl B 0 +∞ C 0 +∞ B + 𝑒 C 0 +∞
15 3 4 14 syl2anc φ k A B + 𝑒 C 0 +∞
16 1 2 15 sge0xrclmpt φ sum^ k A B + 𝑒 C *
17 16 adantr φ sum^ k A B = +∞ sum^ k A B + 𝑒 C *
18 id sum^ k A B = +∞ sum^ k A B = +∞
19 18 eqcomd sum^ k A B = +∞ +∞ = sum^ k A B
20 19 adantl φ sum^ k A B = +∞ +∞ = sum^ k A B
21 2 elexd φ A V
22 iccssxr 0 +∞ *
23 22 3 sselid φ k A B *
24 23 4 xadd0ge φ k A B B + 𝑒 C
25 1 21 3 15 24 sge0lempt φ sum^ k A B sum^ k A B + 𝑒 C
26 25 adantr φ sum^ k A B = +∞ sum^ k A B sum^ k A B + 𝑒 C
27 20 26 eqbrtrd φ sum^ k A B = +∞ +∞ sum^ k A B + 𝑒 C
28 17 27 xrgepnfd φ sum^ k A B = +∞ sum^ k A B + 𝑒 C = +∞
29 28 eqcomd φ sum^ k A B = +∞ +∞ = sum^ k A B + 𝑒 C
30 6 13 29 3eqtrrd φ sum^ k A B = +∞ sum^ k A B + 𝑒 C = sum^ k A B + 𝑒 sum^ k A C
31 simpl φ ¬ sum^ k A B = +∞ φ
32 simpr φ ¬ sum^ k A B = +∞ ¬ sum^ k A B = +∞
33 eqid k A B = k A B
34 1 3 33 fmptdf φ k A B : A 0 +∞
35 2 34 sge0repnf φ sum^ k A B ¬ sum^ k A B = +∞
36 35 adantr φ ¬ sum^ k A B = +∞ sum^ k A B ¬ sum^ k A B = +∞
37 32 36 mpbird φ ¬ sum^ k A B = +∞ sum^ k A B
38 simpr φ sum^ k A C = +∞ sum^ k A C = +∞
39 38 oveq2d φ sum^ k A C = +∞ sum^ k A B + 𝑒 sum^ k A C = sum^ k A B + 𝑒 +∞
40 2 34 sge0xrcl φ sum^ k A B *
41 2 34 sge0nemnf φ sum^ k A B −∞
42 xaddpnf1 sum^ k A B * sum^ k A B −∞ sum^ k A B + 𝑒 +∞ = +∞
43 40 41 42 syl2anc φ sum^ k A B + 𝑒 +∞ = +∞
44 43 adantr φ sum^ k A C = +∞ sum^ k A B + 𝑒 +∞ = +∞
45 16 adantr φ sum^ k A C = +∞ sum^ k A B + 𝑒 C *
46 id sum^ k A C = +∞ sum^ k A C = +∞
47 46 eqcomd sum^ k A C = +∞ +∞ = sum^ k A C
48 47 adantl φ sum^ k A C = +∞ +∞ = sum^ k A C
49 22 4 sselid φ k A C *
50 49 3 xadd0ge2 φ k A C B + 𝑒 C
51 1 2 4 15 50 sge0lempt φ sum^ k A C sum^ k A B + 𝑒 C
52 51 adantr φ sum^ k A C = +∞ sum^ k A C sum^ k A B + 𝑒 C
53 48 52 eqbrtrd φ sum^ k A C = +∞ +∞ sum^ k A B + 𝑒 C
54 45 53 xrgepnfd φ sum^ k A C = +∞ sum^ k A B + 𝑒 C = +∞
55 54 eqcomd φ sum^ k A C = +∞ +∞ = sum^ k A B + 𝑒 C
56 39 44 55 3eqtrrd φ sum^ k A C = +∞ sum^ k A B + 𝑒 C = sum^ k A B + 𝑒 sum^ k A C
57 56 adantlr φ sum^ k A B sum^ k A C = +∞ sum^ k A B + 𝑒 C = sum^ k A B + 𝑒 sum^ k A C
58 simpl φ sum^ k A B ¬ sum^ k A C = +∞ φ sum^ k A B
59 simpr φ ¬ sum^ k A C = +∞ ¬ sum^ k A C = +∞
60 2 9 sge0repnf φ sum^ k A C ¬ sum^ k A C = +∞
61 60 adantr φ ¬ sum^ k A C = +∞ sum^ k A C ¬ sum^ k A C = +∞
62 59 61 mpbird φ ¬ sum^ k A C = +∞ sum^ k A C
63 62 adantlr φ sum^ k A B ¬ sum^ k A C = +∞ sum^ k A C
64 2 ad2antrr φ sum^ k A B sum^ k A C A V
65 nfcv _ k sum^
66 nfmpt1 _ k k A B
67 65 66 nffv _ k sum^ k A B
68 nfcv _ k
69 67 68 nfel k sum^ k A B
70 1 69 nfan k φ sum^ k A B
71 nfv k j A
72 70 71 nfan k φ sum^ k A B j A
73 nfcsb1v _ k j / k B
74 73 nfel1 k j / k B 0 +∞
75 72 74 nfim k φ sum^ k A B j A j / k B 0 +∞
76 eleq1w k = j k A j A
77 76 anbi2d k = j φ sum^ k A B k A φ sum^ k A B j A
78 csbeq1a k = j B = j / k B
79 78 eleq1d k = j B 0 +∞ j / k B 0 +∞
80 77 79 imbi12d k = j φ sum^ k A B k A B 0 +∞ φ sum^ k A B j A j / k B 0 +∞
81 2 adantr φ sum^ k A B A V
82 3 adantlr φ sum^ k A B k A B 0 +∞
83 simpr φ sum^ k A B sum^ k A B
84 70 81 82 83 sge0rernmpt φ sum^ k A B k A B 0 +∞
85 75 80 84 chvarfv φ sum^ k A B j A j / k B 0 +∞
86 85 adantlr φ sum^ k A B sum^ k A C j A j / k B 0 +∞
87 nfmpt1 _ k k A C
88 65 87 nffv _ k sum^ k A C
89 88 68 nfel k sum^ k A C
90 1 89 nfan k φ sum^ k A C
91 90 71 nfan k φ sum^ k A C j A
92 nfcsb1v _ k j / k C
93 92 nfel1 k j / k C 0 +∞
94 91 93 nfim k φ sum^ k A C j A j / k C 0 +∞
95 76 anbi2d k = j φ sum^ k A C k A φ sum^ k A C j A
96 csbeq1a k = j C = j / k C
97 96 eleq1d k = j C 0 +∞ j / k C 0 +∞
98 95 97 imbi12d k = j φ sum^ k A C k A C 0 +∞ φ sum^ k A C j A j / k C 0 +∞
99 2 adantr φ sum^ k A C A V
100 4 adantlr φ sum^ k A C k A C 0 +∞
101 simpr φ sum^ k A C sum^ k A C
102 90 99 100 101 sge0rernmpt φ sum^ k A C k A C 0 +∞
103 94 98 102 chvarfv φ sum^ k A C j A j / k C 0 +∞
104 103 adantllr φ sum^ k A B sum^ k A C j A j / k C 0 +∞
105 nfcv _ j B
106 105 73 78 cbvmpt k A B = j A j / k B
107 106 fveq2i sum^ k A B = sum^ j A j / k B
108 simplr φ sum^ k A B sum^ k A C sum^ k A B
109 107 108 eqeltrrid φ sum^ k A B sum^ k A C sum^ j A j / k B
110 nfcv _ j C
111 110 92 96 cbvmpt k A C = j A j / k C
112 111 fveq2i sum^ k A C = sum^ j A j / k C
113 simpr φ sum^ k A B sum^ k A C sum^ k A C
114 112 113 eqeltrrid φ sum^ k A B sum^ k A C sum^ j A j / k C
115 64 86 104 109 114 sge0xaddlem2 φ sum^ k A B sum^ k A C sum^ j A j / k B + 𝑒 j / k C = sum^ j A j / k B + 𝑒 sum^ j A j / k C
116 nfcv _ j B + 𝑒 C
117 nfcv _ k + 𝑒
118 73 117 92 nfov _ k j / k B + 𝑒 j / k C
119 78 96 oveq12d k = j B + 𝑒 C = j / k B + 𝑒 j / k C
120 116 118 119 cbvmpt k A B + 𝑒 C = j A j / k B + 𝑒 j / k C
121 120 fveq2i sum^ k A B + 𝑒 C = sum^ j A j / k B + 𝑒 j / k C
122 107 112 oveq12i sum^ k A B + 𝑒 sum^ k A C = sum^ j A j / k B + 𝑒 sum^ j A j / k C
123 121 122 eqeq12i sum^ k A B + 𝑒 C = sum^ k A B + 𝑒 sum^ k A C sum^ j A j / k B + 𝑒 j / k C = sum^ j A j / k B + 𝑒 sum^ j A j / k C
124 115 123 sylibr φ sum^ k A B sum^ k A C sum^ k A B + 𝑒 C = sum^ k A B + 𝑒 sum^ k A C
125 58 63 124 syl2anc φ sum^ k A B ¬ sum^ k A C = +∞ sum^ k A B + 𝑒 C = sum^ k A B + 𝑒 sum^ k A C
126 57 125 pm2.61dan φ sum^ k A B sum^ k A B + 𝑒 C = sum^ k A B + 𝑒 sum^ k A C
127 31 37 126 syl2anc φ ¬ sum^ k A B = +∞ sum^ k A B + 𝑒 C = sum^ k A B + 𝑒 sum^ k A C
128 30 127 pm2.61dan φ sum^ k A B + 𝑒 C = sum^ k A B + 𝑒 sum^ k A C