Database
COMPLEX TOPOLOGICAL VECTOR SPACES (DEPRECATED)
Inner product (pre-Hilbert) spaces
Properties of pre-Hilbert spaces
siii
Next ⟩
sii
Metamath Proof Explorer
Ascii
Unicode
Theorem
siii
Description:
Inference from
sii
.
(Contributed by
NM
, 20-Nov-2007)
(New usage is discouraged.)
Ref
Expression
Hypotheses
siii.1
⊢
X
=
BaseSet
U
siii.6
⊢
N
=
norm
CV
U
siii.7
⊢
P
=
⋅
𝑖OLD
U
siii.9
⊢
U
∈
CPreHil
OLD
siii.a
⊢
A
∈
X
siii.b
⊢
B
∈
X
Assertion
siii
⊢
A
P
B
≤
N
A
N
B
Proof
Step
Hyp
Ref
Expression
1
siii.1
⊢
X
=
BaseSet
U
2
siii.6
⊢
N
=
norm
CV
U
3
siii.7
⊢
P
=
⋅
𝑖OLD
U
4
siii.9
⊢
U
∈
CPreHil
OLD
5
siii.a
⊢
A
∈
X
6
siii.b
⊢
B
∈
X
7
oveq2
⊢
B
=
0
vec
U
→
A
P
B
=
A
P
0
vec
U
8
4
phnvi
⊢
U
∈
NrmCVec
9
eqid
⊢
0
vec
U
=
0
vec
U
10
1
9
3
dip0r
⊢
U
∈
NrmCVec
∧
A
∈
X
→
A
P
0
vec
U
=
0
11
8
5
10
mp2an
⊢
A
P
0
vec
U
=
0
12
7
11
eqtrdi
⊢
B
=
0
vec
U
→
A
P
B
=
0
13
12
abs00bd
⊢
B
=
0
vec
U
→
A
P
B
=
0
14
1
2
nvge0
⊢
U
∈
NrmCVec
∧
A
∈
X
→
0
≤
N
A
15
8
5
14
mp2an
⊢
0
≤
N
A
16
1
2
nvge0
⊢
U
∈
NrmCVec
∧
B
∈
X
→
0
≤
N
B
17
8
6
16
mp2an
⊢
0
≤
N
B
18
1
2
8
5
nvcli
⊢
N
A
∈
ℝ
19
1
2
8
6
nvcli
⊢
N
B
∈
ℝ
20
18
19
mulge0i
⊢
0
≤
N
A
∧
0
≤
N
B
→
0
≤
N
A
N
B
21
15
17
20
mp2an
⊢
0
≤
N
A
N
B
22
13
21
eqbrtrdi
⊢
B
=
0
vec
U
→
A
P
B
≤
N
A
N
B
23
1
3
dipcl
⊢
U
∈
NrmCVec
∧
A
∈
X
∧
B
∈
X
→
A
P
B
∈
ℂ
24
8
5
6
23
mp3an
⊢
A
P
B
∈
ℂ
25
absval
⊢
A
P
B
∈
ℂ
→
A
P
B
=
A
P
B
A
P
B
‾
26
24
25
ax-mp
⊢
A
P
B
=
A
P
B
A
P
B
‾
27
19
recni
⊢
N
B
∈
ℂ
28
27
sqeq0i
⊢
N
B
2
=
0
↔
N
B
=
0
29
1
9
2
nvz
⊢
U
∈
NrmCVec
∧
B
∈
X
→
N
B
=
0
↔
B
=
0
vec
U
30
8
6
29
mp2an
⊢
N
B
=
0
↔
B
=
0
vec
U
31
28
30
bitri
⊢
N
B
2
=
0
↔
B
=
0
vec
U
32
31
necon3bii
⊢
N
B
2
≠
0
↔
B
≠
0
vec
U
33
1
3
dipcl
⊢
U
∈
NrmCVec
∧
B
∈
X
∧
A
∈
X
→
B
P
A
∈
ℂ
34
8
6
5
33
mp3an
⊢
B
P
A
∈
ℂ
35
19
resqcli
⊢
N
B
2
∈
ℝ
36
35
recni
⊢
N
B
2
∈
ℂ
37
34
36
divcan1zi
⊢
N
B
2
≠
0
→
B
P
A
N
B
2
N
B
2
=
B
P
A
38
32
37
sylbir
⊢
B
≠
0
vec
U
→
B
P
A
N
B
2
N
B
2
=
B
P
A
39
1
3
dipcj
⊢
U
∈
NrmCVec
∧
A
∈
X
∧
B
∈
X
→
A
P
B
‾
=
B
P
A
40
8
5
6
39
mp3an
⊢
A
P
B
‾
=
B
P
A
41
38
40
eqtr4di
⊢
B
≠
0
vec
U
→
B
P
A
N
B
2
N
B
2
=
A
P
B
‾
42
41
oveq2d
⊢
B
≠
0
vec
U
→
A
P
B
B
P
A
N
B
2
N
B
2
=
A
P
B
A
P
B
‾
43
42
fveq2d
⊢
B
≠
0
vec
U
→
A
P
B
B
P
A
N
B
2
N
B
2
=
A
P
B
A
P
B
‾
44
26
43
eqtr4id
⊢
B
≠
0
vec
U
→
A
P
B
=
A
P
B
B
P
A
N
B
2
N
B
2
45
38
eqcomd
⊢
B
≠
0
vec
U
→
B
P
A
=
B
P
A
N
B
2
N
B
2
46
34
36
divclzi
⊢
N
B
2
≠
0
→
B
P
A
N
B
2
∈
ℂ
47
32
46
sylbir
⊢
B
≠
0
vec
U
→
B
P
A
N
B
2
∈
ℂ
48
div23
⊢
B
P
A
∈
ℂ
∧
A
P
B
∈
ℂ
∧
N
B
2
∈
ℂ
∧
N
B
2
≠
0
→
B
P
A
A
P
B
N
B
2
=
B
P
A
N
B
2
A
P
B
49
34
24
48
mp3an12
⊢
N
B
2
∈
ℂ
∧
N
B
2
≠
0
→
B
P
A
A
P
B
N
B
2
=
B
P
A
N
B
2
A
P
B
50
36
49
mpan
⊢
N
B
2
≠
0
→
B
P
A
A
P
B
N
B
2
=
B
P
A
N
B
2
A
P
B
51
32
50
sylbir
⊢
B
≠
0
vec
U
→
B
P
A
A
P
B
N
B
2
=
B
P
A
N
B
2
A
P
B
52
1
3
ipipcj
⊢
U
∈
NrmCVec
∧
A
∈
X
∧
B
∈
X
→
A
P
B
B
P
A
=
A
P
B
2
53
8
5
6
52
mp3an
⊢
A
P
B
B
P
A
=
A
P
B
2
54
24
34
53
mulcomli
⊢
B
P
A
A
P
B
=
A
P
B
2
55
54
oveq1i
⊢
B
P
A
A
P
B
N
B
2
=
A
P
B
2
N
B
2
56
51
55
eqtr3di
⊢
B
≠
0
vec
U
→
B
P
A
N
B
2
A
P
B
=
A
P
B
2
N
B
2
57
24
abscli
⊢
A
P
B
∈
ℝ
58
57
resqcli
⊢
A
P
B
2
∈
ℝ
59
58
35
redivclzi
⊢
N
B
2
≠
0
→
A
P
B
2
N
B
2
∈
ℝ
60
32
59
sylbir
⊢
B
≠
0
vec
U
→
A
P
B
2
N
B
2
∈
ℝ
61
56
60
eqeltrd
⊢
B
≠
0
vec
U
→
B
P
A
N
B
2
A
P
B
∈
ℝ
62
30
necon3bii
⊢
N
B
≠
0
↔
B
≠
0
vec
U
63
19
sqgt0i
⊢
N
B
≠
0
→
0
<
N
B
2
64
62
63
sylbir
⊢
B
≠
0
vec
U
→
0
<
N
B
2
65
57
sqge0i
⊢
0
≤
A
P
B
2
66
divge0
⊢
A
P
B
2
∈
ℝ
∧
0
≤
A
P
B
2
∧
N
B
2
∈
ℝ
∧
0
<
N
B
2
→
0
≤
A
P
B
2
N
B
2
67
58
65
66
mpanl12
⊢
N
B
2
∈
ℝ
∧
0
<
N
B
2
→
0
≤
A
P
B
2
N
B
2
68
35
64
67
sylancr
⊢
B
≠
0
vec
U
→
0
≤
A
P
B
2
N
B
2
69
68
56
breqtrrd
⊢
B
≠
0
vec
U
→
0
≤
B
P
A
N
B
2
A
P
B
70
eqid
⊢
-
v
U
=
-
v
U
71
eqid
⊢
⋅
𝑠OLD
U
=
⋅
𝑠OLD
U
72
1
2
3
4
5
6
70
71
siilem2
⊢
B
P
A
N
B
2
∈
ℂ
∧
B
P
A
N
B
2
A
P
B
∈
ℝ
∧
0
≤
B
P
A
N
B
2
A
P
B
→
B
P
A
=
B
P
A
N
B
2
N
B
2
→
A
P
B
B
P
A
N
B
2
N
B
2
≤
N
A
N
B
73
47
61
69
72
syl3anc
⊢
B
≠
0
vec
U
→
B
P
A
=
B
P
A
N
B
2
N
B
2
→
A
P
B
B
P
A
N
B
2
N
B
2
≤
N
A
N
B
74
45
73
mpd
⊢
B
≠
0
vec
U
→
A
P
B
B
P
A
N
B
2
N
B
2
≤
N
A
N
B
75
44
74
eqbrtrd
⊢
B
≠
0
vec
U
→
A
P
B
≤
N
A
N
B
76
22
75
pm2.61ine
⊢
A
P
B
≤
N
A
N
B