Metamath Proof Explorer


Theorem siii

Description: Inference from sii . (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses siii.1 X=BaseSetU
siii.6 N=normCVU
siii.7 P=𝑖OLDU
siii.9 UCPreHilOLD
siii.a AX
siii.b BX
Assertion siii APBNANB

Proof

Step Hyp Ref Expression
1 siii.1 X=BaseSetU
2 siii.6 N=normCVU
3 siii.7 P=𝑖OLDU
4 siii.9 UCPreHilOLD
5 siii.a AX
6 siii.b BX
7 oveq2 B=0vecUAPB=AP0vecU
8 4 phnvi UNrmCVec
9 eqid 0vecU=0vecU
10 1 9 3 dip0r UNrmCVecAXAP0vecU=0
11 8 5 10 mp2an AP0vecU=0
12 7 11 eqtrdi B=0vecUAPB=0
13 12 abs00bd B=0vecUAPB=0
14 1 2 nvge0 UNrmCVecAX0NA
15 8 5 14 mp2an 0NA
16 1 2 nvge0 UNrmCVecBX0NB
17 8 6 16 mp2an 0NB
18 1 2 8 5 nvcli NA
19 1 2 8 6 nvcli NB
20 18 19 mulge0i 0NA0NB0NANB
21 15 17 20 mp2an 0NANB
22 13 21 eqbrtrdi B=0vecUAPBNANB
23 1 3 dipcl UNrmCVecAXBXAPB
24 8 5 6 23 mp3an APB
25 absval APBAPB=APBAPB
26 24 25 ax-mp APB=APBAPB
27 19 recni NB
28 27 sqeq0i NB2=0NB=0
29 1 9 2 nvz UNrmCVecBXNB=0B=0vecU
30 8 6 29 mp2an NB=0B=0vecU
31 28 30 bitri NB2=0B=0vecU
32 31 necon3bii NB20B0vecU
33 1 3 dipcl UNrmCVecBXAXBPA
34 8 6 5 33 mp3an BPA
35 19 resqcli NB2
36 35 recni NB2
37 34 36 divcan1zi NB20BPANB2NB2=BPA
38 32 37 sylbir B0vecUBPANB2NB2=BPA
39 1 3 dipcj UNrmCVecAXBXAPB=BPA
40 8 5 6 39 mp3an APB=BPA
41 38 40 eqtr4di B0vecUBPANB2NB2=APB
42 41 oveq2d B0vecUAPBBPANB2NB2=APBAPB
43 42 fveq2d B0vecUAPBBPANB2NB2=APBAPB
44 26 43 eqtr4id B0vecUAPB=APBBPANB2NB2
45 38 eqcomd B0vecUBPA=BPANB2NB2
46 34 36 divclzi NB20BPANB2
47 32 46 sylbir B0vecUBPANB2
48 div23 BPAAPBNB2NB20BPAAPBNB2=BPANB2APB
49 34 24 48 mp3an12 NB2NB20BPAAPBNB2=BPANB2APB
50 36 49 mpan NB20BPAAPBNB2=BPANB2APB
51 32 50 sylbir B0vecUBPAAPBNB2=BPANB2APB
52 1 3 ipipcj UNrmCVecAXBXAPBBPA=APB2
53 8 5 6 52 mp3an APBBPA=APB2
54 24 34 53 mulcomli BPAAPB=APB2
55 54 oveq1i BPAAPBNB2=APB2NB2
56 51 55 eqtr3di B0vecUBPANB2APB=APB2NB2
57 24 abscli APB
58 57 resqcli APB2
59 58 35 redivclzi NB20APB2NB2
60 32 59 sylbir B0vecUAPB2NB2
61 56 60 eqeltrd B0vecUBPANB2APB
62 30 necon3bii NB0B0vecU
63 19 sqgt0i NB00<NB2
64 62 63 sylbir B0vecU0<NB2
65 57 sqge0i 0APB2
66 divge0 APB20APB2NB20<NB20APB2NB2
67 58 65 66 mpanl12 NB20<NB20APB2NB2
68 35 64 67 sylancr B0vecU0APB2NB2
69 68 56 breqtrrd B0vecU0BPANB2APB
70 eqid -vU=-vU
71 eqid 𝑠OLDU=𝑠OLDU
72 1 2 3 4 5 6 70 71 siilem2 BPANB2BPANB2APB0BPANB2APBBPA=BPANB2NB2APBBPANB2NB2NANB
73 47 61 69 72 syl3anc B0vecUBPA=BPANB2NB2APBBPANB2NB2NANB
74 45 73 mpd B0vecUAPBBPANB2NB2NANB
75 44 74 eqbrtrd B0vecUAPBNANB
76 22 75 pm2.61ine APBNANB