Metamath Proof Explorer


Theorem sin01bnd

Description: Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Assertion sin01bnd A01AA33<sinAsinA<A

Proof

Step Hyp Ref Expression
1 0xr 0*
2 1re 1
3 elioc2 0*1A01A0<AA1
4 1 2 3 mp2an A01A0<AA1
5 4 simp1bi A01A
6 3nn0 30
7 reexpcl A30A3
8 5 6 7 sylancl A01A3
9 6nn 6
10 nndivre A36A36
11 8 9 10 sylancl A01A36
12 5 11 resubcld A01AA36
13 12 recnd A01AA36
14 ax-icn i
15 5 recnd A01A
16 mulcl iAiA
17 14 15 16 sylancr A01iA
18 4nn0 40
19 eqid n0iAnn!=n0iAnn!
20 19 eftlcl iA40k4n0iAnn!k
21 17 18 20 sylancl A01k4n0iAnn!k
22 21 imcld A01k4n0iAnn!k
23 22 recnd A01k4n0iAnn!k
24 19 resin4p AsinA=A-A36+k4n0iAnn!k
25 5 24 syl A01sinA=A-A36+k4n0iAnn!k
26 13 23 25 mvrladdd A01sinAAA36=k4n0iAnn!k
27 26 fveq2d A01sinAAA36=k4n0iAnn!k
28 23 abscld A01k4n0iAnn!k
29 21 abscld A01k4n0iAnn!k
30 absimle k4n0iAnn!kk4n0iAnn!kk4n0iAnn!k
31 21 30 syl A01k4n0iAnn!kk4n0iAnn!k
32 reexpcl A40A4
33 5 18 32 sylancl A01A4
34 nndivre A46A46
35 33 9 34 sylancl A01A46
36 19 ef01bndlem A01k4n0iAnn!k<A46
37 6 a1i A0130
38 4z 4
39 3re 3
40 4re 4
41 3lt4 3<4
42 39 40 41 ltleii 34
43 3z 3
44 43 eluz1i 43434
45 38 42 44 mpbir2an 43
46 45 a1i A0143
47 4 simp2bi A010<A
48 0re 0
49 ltle 0A0<A0A
50 48 5 49 sylancr A010<A0A
51 47 50 mpd A010A
52 4 simp3bi A01A1
53 5 37 46 51 52 leexp2rd A01A4A3
54 6re 6
55 54 a1i A016
56 6pos 0<6
57 56 a1i A010<6
58 lediv1 A4A360<6A4A3A46A36
59 33 8 55 57 58 syl112anc A01A4A3A46A36
60 53 59 mpbid A01A46A36
61 29 35 11 36 60 ltletrd A01k4n0iAnn!k<A36
62 28 29 11 31 61 lelttrd A01k4n0iAnn!k<A36
63 27 62 eqbrtrd A01sinAAA36<A36
64 5 resincld A01sinA
65 64 12 11 absdifltd A01sinAAA36<A36A-A36-A36<sinAsinA<A-A36+A36
66 11 recnd A01A36
67 15 66 66 subsub4d A01A-A36-A36=AA36+A36
68 8 recnd A01A3
69 3cn 3
70 3ne0 30
71 69 70 pm3.2i 330
72 2cnne0 220
73 divdiv1 A3330220A332=A332
74 71 72 73 mp3an23 A3A332=A332
75 68 74 syl A01A332=A332
76 3t2e6 32=6
77 76 oveq2i A332=A36
78 75 77 eqtr2di A01A36=A332
79 78 78 oveq12d A01A36+A36=A332+A332
80 3nn 3
81 nndivre A33A33
82 8 80 81 sylancl A01A33
83 82 recnd A01A33
84 83 2halvesd A01A332+A332=A33
85 79 84 eqtrd A01A36+A36=A33
86 85 oveq2d A01AA36+A36=AA33
87 67 86 eqtrd A01A-A36-A36=AA33
88 87 breq1d A01A-A36-A36<sinAAA33<sinA
89 15 66 npcand A01A-A36+A36=A
90 89 breq2d A01sinA<A-A36+A36sinA<A
91 88 90 anbi12d A01A-A36-A36<sinAsinA<A-A36+A36AA33<sinAsinA<A
92 65 91 bitrd A01sinAAA36<A36AA33<sinAsinA<A
93 63 92 mpbid A01AA33<sinAsinA<A