| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0xr |  | 
						
							| 2 |  | 1re |  | 
						
							| 3 |  | elioc2 |  | 
						
							| 4 | 1 2 3 | mp2an |  | 
						
							| 5 | 4 | simp1bi |  | 
						
							| 6 |  | 3nn0 |  | 
						
							| 7 |  | reexpcl |  | 
						
							| 8 | 5 6 7 | sylancl |  | 
						
							| 9 |  | 6nn |  | 
						
							| 10 |  | nndivre |  | 
						
							| 11 | 8 9 10 | sylancl |  | 
						
							| 12 | 5 11 | resubcld |  | 
						
							| 13 | 12 | recnd |  | 
						
							| 14 |  | ax-icn |  | 
						
							| 15 | 5 | recnd |  | 
						
							| 16 |  | mulcl |  | 
						
							| 17 | 14 15 16 | sylancr |  | 
						
							| 18 |  | 4nn0 |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 19 | eftlcl |  | 
						
							| 21 | 17 18 20 | sylancl |  | 
						
							| 22 | 21 | imcld |  | 
						
							| 23 | 22 | recnd |  | 
						
							| 24 | 19 | resin4p |  | 
						
							| 25 | 5 24 | syl |  | 
						
							| 26 | 13 23 25 | mvrladdd |  | 
						
							| 27 | 26 | fveq2d |  | 
						
							| 28 | 23 | abscld |  | 
						
							| 29 | 21 | abscld |  | 
						
							| 30 |  | absimle |  | 
						
							| 31 | 21 30 | syl |  | 
						
							| 32 |  | reexpcl |  | 
						
							| 33 | 5 18 32 | sylancl |  | 
						
							| 34 |  | nndivre |  | 
						
							| 35 | 33 9 34 | sylancl |  | 
						
							| 36 | 19 | ef01bndlem |  | 
						
							| 37 | 6 | a1i |  | 
						
							| 38 |  | 4z |  | 
						
							| 39 |  | 3re |  | 
						
							| 40 |  | 4re |  | 
						
							| 41 |  | 3lt4 |  | 
						
							| 42 | 39 40 41 | ltleii |  | 
						
							| 43 |  | 3z |  | 
						
							| 44 | 43 | eluz1i |  | 
						
							| 45 | 38 42 44 | mpbir2an |  | 
						
							| 46 | 45 | a1i |  | 
						
							| 47 | 4 | simp2bi |  | 
						
							| 48 |  | 0re |  | 
						
							| 49 |  | ltle |  | 
						
							| 50 | 48 5 49 | sylancr |  | 
						
							| 51 | 47 50 | mpd |  | 
						
							| 52 | 4 | simp3bi |  | 
						
							| 53 | 5 37 46 51 52 | leexp2rd |  | 
						
							| 54 |  | 6re |  | 
						
							| 55 | 54 | a1i |  | 
						
							| 56 |  | 6pos |  | 
						
							| 57 | 56 | a1i |  | 
						
							| 58 |  | lediv1 |  | 
						
							| 59 | 33 8 55 57 58 | syl112anc |  | 
						
							| 60 | 53 59 | mpbid |  | 
						
							| 61 | 29 35 11 36 60 | ltletrd |  | 
						
							| 62 | 28 29 11 31 61 | lelttrd |  | 
						
							| 63 | 27 62 | eqbrtrd |  | 
						
							| 64 | 5 | resincld |  | 
						
							| 65 | 64 12 11 | absdifltd |  | 
						
							| 66 | 11 | recnd |  | 
						
							| 67 | 15 66 66 | subsub4d |  | 
						
							| 68 | 8 | recnd |  | 
						
							| 69 |  | 3cn |  | 
						
							| 70 |  | 3ne0 |  | 
						
							| 71 | 69 70 | pm3.2i |  | 
						
							| 72 |  | 2cnne0 |  | 
						
							| 73 |  | divdiv1 |  | 
						
							| 74 | 71 72 73 | mp3an23 |  | 
						
							| 75 | 68 74 | syl |  | 
						
							| 76 |  | 3t2e6 |  | 
						
							| 77 | 76 | oveq2i |  | 
						
							| 78 | 75 77 | eqtr2di |  | 
						
							| 79 | 78 78 | oveq12d |  | 
						
							| 80 |  | 3nn |  | 
						
							| 81 |  | nndivre |  | 
						
							| 82 | 8 80 81 | sylancl |  | 
						
							| 83 | 82 | recnd |  | 
						
							| 84 | 83 | 2halvesd |  | 
						
							| 85 | 79 84 | eqtrd |  | 
						
							| 86 | 85 | oveq2d |  | 
						
							| 87 | 67 86 | eqtrd |  | 
						
							| 88 | 87 | breq1d |  | 
						
							| 89 | 15 66 | npcand |  | 
						
							| 90 | 89 | breq2d |  | 
						
							| 91 | 88 90 | anbi12d |  | 
						
							| 92 | 65 91 | bitrd |  | 
						
							| 93 | 63 92 | mpbid |  |