Metamath Proof Explorer


Theorem smadiadet

Description: The determinant of a submatrix of a square matrix obtained by removing a row and a column at the same index equals the determinant of the original matrix with the row replaced with 0's and a 1 at the diagonal position. (Contributed by AV, 31-Jan-2019) (Proof shortened by AV, 24-Jul-2019)

Ref Expression
Hypotheses smadiadet.a A = N Mat R
smadiadet.b B = Base A
smadiadet.r R CRing
smadiadet.d D = N maDet R
smadiadet.h E = N K maDet R
Assertion smadiadet M B K N E K N subMat R M K = D K N minMatR1 R M K

Proof

Step Hyp Ref Expression
1 smadiadet.a A = N Mat R
2 smadiadet.b B = Base A
3 smadiadet.r R CRing
4 smadiadet.d D = N maDet R
5 smadiadet.h E = N K maDet R
6 eqid N subMat R = N subMat R
7 1 6 2 submaval M B K N K N K N subMat R M K = i N K , j N K i M j
8 7 3anidm23 M B K N K N subMat R M K = i N K , j N K i M j
9 8 fveq2d M B K N E K N subMat R M K = E i N K , j N K i M j
10 eqid N minMatR1 R = N minMatR1 R
11 eqid 1 R = 1 R
12 eqid 0 R = 0 R
13 1 2 10 11 12 minmar1val M B K N K N K N minMatR1 R M K = i N , j N if i = K if j = K 1 R 0 R i M j
14 13 3anidm23 M B K N K N minMatR1 R M K = i N , j N if i = K if j = K 1 R 0 R i M j
15 14 fveq2d M B K N D K N minMatR1 R M K = D i N , j N if i = K if j = K 1 R 0 R i M j
16 1 2 3 12 11 marep01ma M B i N , j N if i = K if j = K 1 R 0 R i M j B
17 eqid Base SymGrp N = Base SymGrp N
18 eqid ℤRHom R = ℤRHom R
19 eqid pmSgn N = pmSgn N
20 eqid R = R
21 eqid mulGrp R = mulGrp R
22 4 1 2 17 18 19 20 21 mdetleib2 R CRing i N , j N if i = K if j = K 1 R 0 R i M j B D i N , j N if i = K if j = K 1 R 0 R i M j = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R n N n i N , j N if i = K if j = K 1 R 0 R i M j p n
23 3 16 22 sylancr M B D i N , j N if i = K if j = K 1 R 0 R i M j = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R n N n i N , j N if i = K if j = K 1 R 0 R i M j p n
24 23 adantr M B K N D i N , j N if i = K if j = K 1 R 0 R i M j = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R n N n i N , j N if i = K if j = K 1 R 0 R i M j p n
25 eqid Base R = Base R
26 eqid + R = + R
27 crngring R CRing R Ring
28 ringcmn R Ring R CMnd
29 3 27 28 mp2b R CMnd
30 29 a1i M B K N R CMnd
31 1 2 matrcl M B N Fin R V
32 31 simpld M B N Fin
33 eqid SymGrp N = SymGrp N
34 33 17 symgbasfi N Fin Base SymGrp N Fin
35 32 34 syl M B Base SymGrp N Fin
36 35 adantr M B K N Base SymGrp N Fin
37 1 2 3 12 11 17 21 18 19 20 smadiadetlem1 M B K N p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R n N n i N , j N if i = K if j = K 1 R 0 R i M j p n Base R
38 disjdif q Base SymGrp N | q K = K Base SymGrp N q Base SymGrp N | q K = K =
39 38 a1i M B K N q Base SymGrp N | q K = K Base SymGrp N q Base SymGrp N | q K = K =
40 ssrab2 q Base SymGrp N | q K = K Base SymGrp N
41 40 a1i M B K N q Base SymGrp N | q K = K Base SymGrp N
42 undif q Base SymGrp N | q K = K Base SymGrp N q Base SymGrp N | q K = K Base SymGrp N q Base SymGrp N | q K = K = Base SymGrp N
43 41 42 sylib M B K N q Base SymGrp N | q K = K Base SymGrp N q Base SymGrp N | q K = K = Base SymGrp N
44 43 eqcomd M B K N Base SymGrp N = q Base SymGrp N | q K = K Base SymGrp N q Base SymGrp N | q K = K
45 25 26 30 36 37 39 44 gsummptfidmsplit M B K N R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R n N n i N , j N if i = K if j = K 1 R 0 R i M j p n = R p q Base SymGrp N | q K = K ℤRHom R pmSgn N p R mulGrp R n N n i N , j N if i = K if j = K 1 R 0 R i M j p n + R R p Base SymGrp N q Base SymGrp N | q K = K ℤRHom R pmSgn N p R mulGrp R n N n i N , j N if i = K if j = K 1 R 0 R i M j p n
46 eqid Base SymGrp N K = Base SymGrp N K
47 eqid pmSgn N K = pmSgn N K
48 1 2 3 12 11 17 21 18 19 20 46 47 smadiadetlem4 M B K N R p q Base SymGrp N | q K = K ℤRHom R pmSgn N p R mulGrp R n N n i N , j N if i = K if j = K 1 R 0 R i M j p n = R p Base SymGrp N K ℤRHom R pmSgn N K p R mulGrp R n N K n i N K , j N K i M j p n
49 1 2 3 12 11 17 21 18 19 20 smadiadetlem2 M B K N R p Base SymGrp N q Base SymGrp N | q K = K ℤRHom R pmSgn N p R mulGrp R n N n i N , j N if i = K if j = K 1 R 0 R i M j p n = 0 R
50 48 49 oveq12d M B K N R p q Base SymGrp N | q K = K ℤRHom R pmSgn N p R mulGrp R n N n i N , j N if i = K if j = K 1 R 0 R i M j p n + R R p Base SymGrp N q Base SymGrp N | q K = K ℤRHom R pmSgn N p R mulGrp R n N n i N , j N if i = K if j = K 1 R 0 R i M j p n = R p Base SymGrp N K ℤRHom R pmSgn N K p R mulGrp R n N K n i N K , j N K i M j p n + R 0 R
51 ringmnd R Ring R Mnd
52 3 27 51 mp2b R Mnd
53 diffi N Fin N K Fin
54 32 53 syl M B N K Fin
55 54 adantr M B K N N K Fin
56 eqid SymGrp N K = SymGrp N K
57 56 46 symgbasfi N K Fin Base SymGrp N K Fin
58 55 57 syl M B K N Base SymGrp N K Fin
59 simpll M B K N p Base SymGrp N K M B
60 difssd M B K N p Base SymGrp N K N K N
61 1 2 submabas M B N K N i N K , j N K i M j Base N K Mat R
62 59 60 61 syl2anc M B K N p Base SymGrp N K i N K , j N K i M j Base N K Mat R
63 simpr M B K N p Base SymGrp N K p Base SymGrp N K
64 eqid N K Mat R = N K Mat R
65 eqid Base N K Mat R = Base N K Mat R
66 46 47 18 64 65 21 madetsmelbas2 R CRing i N K , j N K i M j Base N K Mat R p Base SymGrp N K ℤRHom R pmSgn N K p R mulGrp R n N K n i N K , j N K i M j p n Base R
67 3 62 63 66 mp3an2i M B K N p Base SymGrp N K ℤRHom R pmSgn N K p R mulGrp R n N K n i N K , j N K i M j p n Base R
68 67 ralrimiva M B K N p Base SymGrp N K ℤRHom R pmSgn N K p R mulGrp R n N K n i N K , j N K i M j p n Base R
69 25 30 58 68 gsummptcl M B K N R p Base SymGrp N K ℤRHom R pmSgn N K p R mulGrp R n N K n i N K , j N K i M j p n Base R
70 25 26 12 mndrid R Mnd R p Base SymGrp N K ℤRHom R pmSgn N K p R mulGrp R n N K n i N K , j N K i M j p n Base R R p Base SymGrp N K ℤRHom R pmSgn N K p R mulGrp R n N K n i N K , j N K i M j p n + R 0 R = R p Base SymGrp N K ℤRHom R pmSgn N K p R mulGrp R n N K n i N K , j N K i M j p n
71 52 69 70 sylancr M B K N R p Base SymGrp N K ℤRHom R pmSgn N K p R mulGrp R n N K n i N K , j N K i M j p n + R 0 R = R p Base SymGrp N K ℤRHom R pmSgn N K p R mulGrp R n N K n i N K , j N K i M j p n
72 difssd K N N K N
73 61 3 jctil M B N K N R CRing i N K , j N K i M j Base N K Mat R
74 72 73 sylan2 M B K N R CRing i N K , j N K i M j Base N K Mat R
75 5 64 65 46 18 47 20 21 mdetleib2 R CRing i N K , j N K i M j Base N K Mat R E i N K , j N K i M j = R p Base SymGrp N K ℤRHom R pmSgn N K p R mulGrp R n N K n i N K , j N K i M j p n
76 74 75 syl M B K N E i N K , j N K i M j = R p Base SymGrp N K ℤRHom R pmSgn N K p R mulGrp R n N K n i N K , j N K i M j p n
77 71 76 eqtr4d M B K N R p Base SymGrp N K ℤRHom R pmSgn N K p R mulGrp R n N K n i N K , j N K i M j p n + R 0 R = E i N K , j N K i M j
78 45 50 77 3eqtrd M B K N R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R n N n i N , j N if i = K if j = K 1 R 0 R i M j p n = E i N K , j N K i M j
79 15 24 78 3eqtrd M B K N D K N minMatR1 R M K = E i N K , j N K i M j
80 9 79 eqtr4d M B K N E K N subMat R M K = D K N minMatR1 R M K