Metamath Proof Explorer


Theorem smfpimbor1lem1

Description: Every open set belongs to T . This is the second step in the proof of Proposition 121E (f) of Fremlin1 p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimbor1lem1.s φSSAlg
smfpimbor1lem1.f φFSMblFnS
smfpimbor1lem1.a D=domF
smfpimbor1lem1.j J=topGenran.
smfpimbor1lem1.8 φGJ
smfpimbor1lem1.t T=e𝒫|F-1eS𝑡D
Assertion smfpimbor1lem1 φGT

Proof

Step Hyp Ref Expression
1 smfpimbor1lem1.s φSSAlg
2 smfpimbor1lem1.f φFSMblFnS
3 smfpimbor1lem1.a D=domF
4 smfpimbor1lem1.j J=topGenran.
5 smfpimbor1lem1.8 φGJ
6 smfpimbor1lem1.t T=e𝒫|F-1eS𝑡D
7 4 5 tgqioo2 φqq.×G=q
8 simprr φq.×G=qG=q
9 1 2 3 6 smfresal φTSAlg
10 9 adantr φq.×TSAlg
11 iooex .V
12 11 imaexi .×V
13 12 a1i q.×.×V
14 id q.×q.×
15 13 14 ssexd q.×qV
16 15 adantl φq.×qV
17 simpr φq.×q.×
18 ioofun Fun.
19 18 a1i q.×Fun.
20 id q.×q.×
21 fvelima Fun.q.×p×.p=q
22 19 20 21 syl2anc q.×p×.p=q
23 22 adantl φq.×p×.p=q
24 id .p=q.p=q
25 24 eqcomd .p=qq=.p
26 25 adantl p×.p=qq=.p
27 1st2nd2 p×p=1stp2ndp
28 27 fveq2d p×.p=.1stp2ndp
29 df-ov 1stp2ndp=.1stp2ndp
30 29 eqcomi .1stp2ndp=1stp2ndp
31 30 a1i p×.1stp2ndp=1stp2ndp
32 28 31 eqtrd p×.p=1stp2ndp
33 32 adantr p×.p=q.p=1stp2ndp
34 26 33 eqtrd p×.p=qq=1stp2ndp
35 34 3adant1 φp×.p=qq=1stp2ndp
36 ioossre 1stp2ndp
37 ovex 1stp2ndpV
38 37 elpw 1stp2ndp𝒫1stp2ndp
39 36 38 mpbir 1stp2ndp𝒫
40 39 a1i φp×1stp2ndp𝒫
41 1 adantr φp×SSAlg
42 2 adantr φp×FSMblFnS
43 xp1st p×1stp
44 43 qred p×1stp
45 44 rexrd p×1stp*
46 45 adantl φp×1stp*
47 xp2nd p×2ndp
48 47 qred p×2ndp
49 48 rexrd p×2ndp*
50 49 adantl φp×2ndp*
51 41 42 3 46 50 smfpimioo φp×F-11stp2ndpS𝑡D
52 40 51 jca φp×1stp2ndp𝒫F-11stp2ndpS𝑡D
53 imaeq2 e=1stp2ndpF-1e=F-11stp2ndp
54 53 eleq1d e=1stp2ndpF-1eS𝑡DF-11stp2ndpS𝑡D
55 54 6 elrab2 1stp2ndpT1stp2ndp𝒫F-11stp2ndpS𝑡D
56 52 55 sylibr φp×1stp2ndpT
57 56 3adant3 φp×.p=q1stp2ndpT
58 35 57 eqeltrd φp×.p=qqT
59 58 3exp φp×.p=qqT
60 59 rexlimdv φp×.p=qqT
61 60 adantr φq.×p×.p=qqT
62 23 61 mpd φq.×qT
63 62 ssd φ.×T
64 63 adantr φq.×.×T
65 17 64 sstrd φq.×qT
66 16 65 elpwd φq.×q𝒫T
67 ssdomg .×Vq.×q.×
68 12 67 ax-mp q.×q.×
69 qct ω
70 69 69 pm3.2i ωω
71 xpct ωω×ω
72 70 71 ax-mp ×ω
73 fimact ×ωFun..×ω
74 72 18 73 mp2an .×ω
75 74 a1i q.×.×ω
76 domtr q.×.×ωqω
77 68 75 76 syl2anc q.×qω
78 77 adantl φq.×qω
79 10 66 78 salunicl φq.×qT
80 79 adantrr φq.×G=qqT
81 8 80 eqeltrd φq.×G=qGT
82 81 ex φq.×G=qGT
83 82 exlimdv φqq.×G=qGT
84 7 83 mpd φGT