Metamath Proof Explorer


Theorem smfsuplem2

Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of Fremlin1 p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smfsuplem2.m φ M
smfsuplem2.z Z = M
smfsuplem2.s φ S SAlg
smfsuplem2.f φ F : Z SMblFn S
smfsuplem2.d D = x n Z dom F n | y n Z F n x y
smfsuplem2.g G = x D sup ran n Z F n x <
smfsuplem2.8 φ A
Assertion smfsuplem2 φ G -1 −∞ A S 𝑡 D

Proof

Step Hyp Ref Expression
1 smfsuplem2.m φ M
2 smfsuplem2.z Z = M
3 smfsuplem2.s φ S SAlg
4 smfsuplem2.f φ F : Z SMblFn S
5 smfsuplem2.d D = x n Z dom F n | y n Z F n x y
6 smfsuplem2.g G = x D sup ran n Z F n x <
7 smfsuplem2.8 φ A
8 nfcv _ n F
9 eqid topGen ran . = topGen ran .
10 eqid SalGen topGen ran . = SalGen topGen ran .
11 mnfxr −∞ *
12 11 a1i φ −∞ *
13 12 7 9 10 iocborel φ −∞ A SalGen topGen ran .
14 8 2 3 4 9 10 13 smfpimcc φ h h : Z S n Z F n -1 −∞ A = h n dom F n
15 1 adantr φ h : Z S n Z F n -1 −∞ A = h n dom F n M
16 3 adantr φ h : Z S n Z F n -1 −∞ A = h n dom F n S SAlg
17 4 adantr φ h : Z S n Z F n -1 −∞ A = h n dom F n F : Z SMblFn S
18 fveq2 n = m F n = F m
19 18 dmeqd n = m dom F n = dom F m
20 19 cbviinv n Z dom F n = m Z dom F m
21 20 a1i x = w n Z dom F n = m Z dom F m
22 fveq2 x = w F n x = F n w
23 22 breq1d x = w F n x y F n w y
24 23 ralbidv x = w n Z F n x y n Z F n w y
25 18 fveq1d n = m F n w = F m w
26 25 breq1d n = m F n w y F m w y
27 26 cbvralvw n Z F n w y m Z F m w y
28 27 a1i x = w n Z F n w y m Z F m w y
29 24 28 bitrd x = w n Z F n x y m Z F m w y
30 29 rexbidv x = w y n Z F n x y y m Z F m w y
31 21 30 cbvrabv2w x n Z dom F n | y n Z F n x y = w m Z dom F m | y m Z F m w y
32 5 31 eqtri D = w m Z dom F m | y m Z F m w y
33 22 mpteq2dv x = w n Z F n x = n Z F n w
34 25 cbvmptv n Z F n w = m Z F m w
35 34 a1i x = w n Z F n w = m Z F m w
36 33 35 eqtrd x = w n Z F n x = m Z F m w
37 36 rneqd x = w ran n Z F n x = ran m Z F m w
38 37 supeq1d x = w sup ran n Z F n x < = sup ran m Z F m w <
39 38 cbvmptv x D sup ran n Z F n x < = w D sup ran m Z F m w <
40 6 39 eqtri G = w D sup ran m Z F m w <
41 7 adantr φ h : Z S n Z F n -1 −∞ A = h n dom F n A
42 simprl φ h : Z S n Z F n -1 −∞ A = h n dom F n h : Z S
43 simplrr φ h : Z S n Z F n -1 −∞ A = h n dom F n m Z n Z F n -1 −∞ A = h n dom F n
44 18 cnveqd n = m F n -1 = F m -1
45 44 imaeq1d n = m F n -1 −∞ A = F m -1 −∞ A
46 fveq2 n = m h n = h m
47 46 19 ineq12d n = m h n dom F n = h m dom F m
48 45 47 eqeq12d n = m F n -1 −∞ A = h n dom F n F m -1 −∞ A = h m dom F m
49 48 rspccva n Z F n -1 −∞ A = h n dom F n m Z F m -1 −∞ A = h m dom F m
50 43 49 sylancom φ h : Z S n Z F n -1 −∞ A = h n dom F n m Z F m -1 −∞ A = h m dom F m
51 15 2 16 17 32 40 41 42 50 smfsuplem1 φ h : Z S n Z F n -1 −∞ A = h n dom F n G -1 −∞ A S 𝑡 D
52 51 ex φ h : Z S n Z F n -1 −∞ A = h n dom F n G -1 −∞ A S 𝑡 D
53 52 exlimdv φ h h : Z S n Z F n -1 −∞ A = h n dom F n G -1 −∞ A S 𝑡 D
54 14 53 mpd φ G -1 −∞ A S 𝑡 D