Step |
Hyp |
Ref |
Expression |
1 |
|
smfsuplem2.m |
|
2 |
|
smfsuplem2.z |
|
3 |
|
smfsuplem2.s |
|
4 |
|
smfsuplem2.f |
|
5 |
|
smfsuplem2.d |
|
6 |
|
smfsuplem2.g |
|
7 |
|
smfsuplem2.8 |
|
8 |
|
nfcv |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
mnfxr |
|
12 |
11
|
a1i |
|
13 |
12 7 9 10
|
iocborel |
|
14 |
8 2 3 4 9 10 13
|
smfpimcc |
|
15 |
1
|
adantr |
|
16 |
3
|
adantr |
|
17 |
4
|
adantr |
|
18 |
|
fveq2 |
|
19 |
18
|
dmeqd |
|
20 |
19
|
cbviinv |
|
21 |
20
|
a1i |
|
22 |
|
fveq2 |
|
23 |
22
|
breq1d |
|
24 |
23
|
ralbidv |
|
25 |
18
|
fveq1d |
|
26 |
25
|
breq1d |
|
27 |
26
|
cbvralvw |
|
28 |
27
|
a1i |
|
29 |
24 28
|
bitrd |
|
30 |
29
|
rexbidv |
|
31 |
21 30
|
cbvrabv2w |
|
32 |
5 31
|
eqtri |
|
33 |
22
|
mpteq2dv |
|
34 |
25
|
cbvmptv |
|
35 |
34
|
a1i |
|
36 |
33 35
|
eqtrd |
|
37 |
36
|
rneqd |
|
38 |
37
|
supeq1d |
|
39 |
38
|
cbvmptv |
|
40 |
6 39
|
eqtri |
|
41 |
7
|
adantr |
|
42 |
|
simprl |
|
43 |
|
simplrr |
|
44 |
18
|
cnveqd |
|
45 |
44
|
imaeq1d |
|
46 |
|
fveq2 |
|
47 |
46 19
|
ineq12d |
|
48 |
45 47
|
eqeq12d |
|
49 |
48
|
rspccva |
|
50 |
43 49
|
sylancom |
|
51 |
15 2 16 17 32 40 41 42 50
|
smfsuplem1 |
|
52 |
51
|
ex |
|
53 |
52
|
exlimdv |
|
54 |
14 53
|
mpd |
|