Metamath Proof Explorer


Theorem srgbinom

Description: The binomial theorem for commuting elements of a semiring: ( A + B ) ^ N is the sum from k = 0 to N of ( N _C k ) x. ( ( A ^ k ) x. ( B ^ ( N - k ) ) (generalization of binom ). (Contributed by AV, 24-Aug-2019)

Ref Expression
Hypotheses srgbinom.s S=BaseR
srgbinom.m ×˙=R
srgbinom.t ·˙=R
srgbinom.a +˙=+R
srgbinom.g G=mulGrpR
srgbinom.e ×˙=G
Assertion srgbinom RSRingN0ASBSA×˙B=B×˙AN×˙A+˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B

Proof

Step Hyp Ref Expression
1 srgbinom.s S=BaseR
2 srgbinom.m ×˙=R
3 srgbinom.t ·˙=R
4 srgbinom.a +˙=+R
5 srgbinom.g G=mulGrpR
6 srgbinom.e ×˙=G
7 oveq1 x=0x×˙A+˙B=0×˙A+˙B
8 oveq2 x=00x=00
9 oveq1 x=0(xk)=(0k)
10 oveq1 x=0xk=0k
11 10 oveq1d x=0xk×˙A=0k×˙A
12 11 oveq1d x=0xk×˙A×˙k×˙B=0k×˙A×˙k×˙B
13 9 12 oveq12d x=0(xk)·˙xk×˙A×˙k×˙B=(0k)·˙0k×˙A×˙k×˙B
14 8 13 mpteq12dv x=0k0x(xk)·˙xk×˙A×˙k×˙B=k00(0k)·˙0k×˙A×˙k×˙B
15 14 oveq2d x=0Rk=0x(xk)·˙xk×˙A×˙k×˙B=Rk=00(0k)·˙0k×˙A×˙k×˙B
16 7 15 eqeq12d x=0x×˙A+˙B=Rk=0x(xk)·˙xk×˙A×˙k×˙B0×˙A+˙B=Rk=00(0k)·˙0k×˙A×˙k×˙B
17 16 imbi2d x=0RSRingASBSA×˙B=B×˙Ax×˙A+˙B=Rk=0x(xk)·˙xk×˙A×˙k×˙BRSRingASBSA×˙B=B×˙A0×˙A+˙B=Rk=00(0k)·˙0k×˙A×˙k×˙B
18 oveq1 x=nx×˙A+˙B=n×˙A+˙B
19 oveq2 x=n0x=0n
20 oveq1 x=n(xk)=(nk)
21 oveq1 x=nxk=nk
22 21 oveq1d x=nxk×˙A=nk×˙A
23 22 oveq1d x=nxk×˙A×˙k×˙B=nk×˙A×˙k×˙B
24 20 23 oveq12d x=n(xk)·˙xk×˙A×˙k×˙B=(nk)·˙nk×˙A×˙k×˙B
25 19 24 mpteq12dv x=nk0x(xk)·˙xk×˙A×˙k×˙B=k0n(nk)·˙nk×˙A×˙k×˙B
26 25 oveq2d x=nRk=0x(xk)·˙xk×˙A×˙k×˙B=Rk=0n(nk)·˙nk×˙A×˙k×˙B
27 18 26 eqeq12d x=nx×˙A+˙B=Rk=0x(xk)·˙xk×˙A×˙k×˙Bn×˙A+˙B=Rk=0n(nk)·˙nk×˙A×˙k×˙B
28 27 imbi2d x=nRSRingASBSA×˙B=B×˙Ax×˙A+˙B=Rk=0x(xk)·˙xk×˙A×˙k×˙BRSRingASBSA×˙B=B×˙An×˙A+˙B=Rk=0n(nk)·˙nk×˙A×˙k×˙B
29 oveq1 x=n+1x×˙A+˙B=n+1×˙A+˙B
30 oveq2 x=n+10x=0n+1
31 oveq1 x=n+1(xk)=(n+1k)
32 oveq1 x=n+1xk=n+1-k
33 32 oveq1d x=n+1xk×˙A=n+1-k×˙A
34 33 oveq1d x=n+1xk×˙A×˙k×˙B=n+1-k×˙A×˙k×˙B
35 31 34 oveq12d x=n+1(xk)·˙xk×˙A×˙k×˙B=(n+1k)·˙n+1-k×˙A×˙k×˙B
36 30 35 mpteq12dv x=n+1k0x(xk)·˙xk×˙A×˙k×˙B=k0n+1(n+1k)·˙n+1-k×˙A×˙k×˙B
37 36 oveq2d x=n+1Rk=0x(xk)·˙xk×˙A×˙k×˙B=Rk=0n+1(n+1k)·˙n+1-k×˙A×˙k×˙B
38 29 37 eqeq12d x=n+1x×˙A+˙B=Rk=0x(xk)·˙xk×˙A×˙k×˙Bn+1×˙A+˙B=Rk=0n+1(n+1k)·˙n+1-k×˙A×˙k×˙B
39 38 imbi2d x=n+1RSRingASBSA×˙B=B×˙Ax×˙A+˙B=Rk=0x(xk)·˙xk×˙A×˙k×˙BRSRingASBSA×˙B=B×˙An+1×˙A+˙B=Rk=0n+1(n+1k)·˙n+1-k×˙A×˙k×˙B
40 oveq1 x=Nx×˙A+˙B=N×˙A+˙B
41 oveq2 x=N0x=0N
42 oveq1 x=N(xk)=(Nk)
43 oveq1 x=Nxk=Nk
44 43 oveq1d x=Nxk×˙A=Nk×˙A
45 44 oveq1d x=Nxk×˙A×˙k×˙B=Nk×˙A×˙k×˙B
46 42 45 oveq12d x=N(xk)·˙xk×˙A×˙k×˙B=(Nk)·˙Nk×˙A×˙k×˙B
47 41 46 mpteq12dv x=Nk0x(xk)·˙xk×˙A×˙k×˙B=k0N(Nk)·˙Nk×˙A×˙k×˙B
48 47 oveq2d x=NRk=0x(xk)·˙xk×˙A×˙k×˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B
49 40 48 eqeq12d x=Nx×˙A+˙B=Rk=0x(xk)·˙xk×˙A×˙k×˙BN×˙A+˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B
50 49 imbi2d x=NRSRingASBSA×˙B=B×˙Ax×˙A+˙B=Rk=0x(xk)·˙xk×˙A×˙k×˙BRSRingASBSA×˙B=B×˙AN×˙A+˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B
51 simpr1 RSRingASBSA×˙B=B×˙AAS
52 5 1 mgpbas S=BaseG
53 51 52 eleqtrdi RSRingASBSA×˙B=B×˙AABaseG
54 eqid BaseG=BaseG
55 eqid 0G=0G
56 54 55 6 mulg0 ABaseG0×˙A=0G
57 53 56 syl RSRingASBSA×˙B=B×˙A0×˙A=0G
58 simpr2 RSRingASBSA×˙B=B×˙ABS
59 58 52 eleqtrdi RSRingASBSA×˙B=B×˙ABBaseG
60 54 55 6 mulg0 BBaseG0×˙B=0G
61 59 60 syl RSRingASBSA×˙B=B×˙A0×˙B=0G
62 57 61 oveq12d RSRingASBSA×˙B=B×˙A0×˙A×˙0×˙B=0G×˙0G
63 62 oveq2d RSRingASBSA×˙B=B×˙A1·˙0×˙A×˙0×˙B=1·˙0G×˙0G
64 eqid 1R=1R
65 1 64 srgidcl RSRing1RS
66 65 ancli RSRingRSRing1RS
67 66 adantr RSRingASBSA×˙B=B×˙ARSRing1RS
68 1 2 64 srglidm RSRing1RS1R×˙1R=1R
69 67 68 syl RSRingASBSA×˙B=B×˙A1R×˙1R=1R
70 69 oveq2d RSRingASBSA×˙B=B×˙A1·˙1R×˙1R=1·˙1R
71 eqid BaseR=BaseR
72 71 64 srgidcl RSRing1RBaseR
73 71 3 mulg1 1RBaseR1·˙1R=1R
74 72 73 syl RSRing1·˙1R=1R
75 74 adantr RSRingASBSA×˙B=B×˙A1·˙1R=1R
76 70 75 eqtrd RSRingASBSA×˙B=B×˙A1·˙1R×˙1R=1R
77 5 64 ringidval 1R=0G
78 id 1R=0G1R=0G
79 78 78 oveq12d 1R=0G1R×˙1R=0G×˙0G
80 79 oveq2d 1R=0G1·˙1R×˙1R=1·˙0G×˙0G
81 80 78 eqeq12d 1R=0G1·˙1R×˙1R=1R1·˙0G×˙0G=0G
82 77 81 ax-mp 1·˙1R×˙1R=1R1·˙0G×˙0G=0G
83 76 82 sylib RSRingASBSA×˙B=B×˙A1·˙0G×˙0G=0G
84 63 83 eqtrd RSRingASBSA×˙B=B×˙A1·˙0×˙A×˙0×˙B=0G
85 fz0sn 00=0
86 85 a1i RSRingASBSA×˙B=B×˙A00=0
87 86 mpteq1d RSRingASBSA×˙B=B×˙Ak00(0k)·˙0k×˙A×˙k×˙B=k0(0k)·˙0k×˙A×˙k×˙B
88 87 oveq2d RSRingASBSA×˙B=B×˙ARk=00(0k)·˙0k×˙A×˙k×˙B=Rk0(0k)·˙0k×˙A×˙k×˙B
89 srgmnd RSRingRMnd
90 89 adantr RSRingASBSA×˙B=B×˙ARMnd
91 c0ex 0V
92 91 a1i RSRingASBSA×˙B=B×˙A0V
93 77 65 eqeltrrid RSRing0GS
94 93 adantr RSRingASBSA×˙B=B×˙A0GS
95 84 94 eqeltrd RSRingASBSA×˙B=B×˙A1·˙0×˙A×˙0×˙BS
96 oveq2 k=0(0k)=(00)
97 0nn0 00
98 bcn0 00(00)=1
99 97 98 ax-mp (00)=1
100 96 99 eqtrdi k=0(0k)=1
101 oveq2 k=00k=00
102 0m0e0 00=0
103 101 102 eqtrdi k=00k=0
104 103 oveq1d k=00k×˙A=0×˙A
105 oveq1 k=0k×˙B=0×˙B
106 104 105 oveq12d k=00k×˙A×˙k×˙B=0×˙A×˙0×˙B
107 100 106 oveq12d k=0(0k)·˙0k×˙A×˙k×˙B=1·˙0×˙A×˙0×˙B
108 1 107 gsumsn RMnd0V1·˙0×˙A×˙0×˙BSRk0(0k)·˙0k×˙A×˙k×˙B=1·˙0×˙A×˙0×˙B
109 90 92 95 108 syl3anc RSRingASBSA×˙B=B×˙ARk0(0k)·˙0k×˙A×˙k×˙B=1·˙0×˙A×˙0×˙B
110 88 109 eqtrd RSRingASBSA×˙B=B×˙ARk=00(0k)·˙0k×˙A×˙k×˙B=1·˙0×˙A×˙0×˙B
111 1 4 mndcl RMndASBSA+˙BS
112 90 51 58 111 syl3anc RSRingASBSA×˙B=B×˙AA+˙BS
113 112 52 eleqtrdi RSRingASBSA×˙B=B×˙AA+˙BBaseG
114 54 55 6 mulg0 A+˙BBaseG0×˙A+˙B=0G
115 113 114 syl RSRingASBSA×˙B=B×˙A0×˙A+˙B=0G
116 84 110 115 3eqtr4rd RSRingASBSA×˙B=B×˙A0×˙A+˙B=Rk=00(0k)·˙0k×˙A×˙k×˙B
117 simprl n0RSRingASBSA×˙B=B×˙ARSRing
118 51 adantl n0RSRingASBSA×˙B=B×˙AAS
119 58 adantl n0RSRingASBSA×˙B=B×˙ABS
120 simprr3 n0RSRingASBSA×˙B=B×˙AA×˙B=B×˙A
121 simpl n0RSRingASBSA×˙B=B×˙An0
122 id n×˙A+˙B=Rk=0n(nk)·˙nk×˙A×˙k×˙Bn×˙A+˙B=Rk=0n(nk)·˙nk×˙A×˙k×˙B
123 1 2 3 4 5 6 117 118 119 120 121 122 srgbinomlem n0RSRingASBSA×˙B=B×˙An×˙A+˙B=Rk=0n(nk)·˙nk×˙A×˙k×˙Bn+1×˙A+˙B=Rk=0n+1(n+1k)·˙n+1-k×˙A×˙k×˙B
124 123 exp31 n0RSRingASBSA×˙B=B×˙An×˙A+˙B=Rk=0n(nk)·˙nk×˙A×˙k×˙Bn+1×˙A+˙B=Rk=0n+1(n+1k)·˙n+1-k×˙A×˙k×˙B
125 124 a2d n0RSRingASBSA×˙B=B×˙An×˙A+˙B=Rk=0n(nk)·˙nk×˙A×˙k×˙BRSRingASBSA×˙B=B×˙An+1×˙A+˙B=Rk=0n+1(n+1k)·˙n+1-k×˙A×˙k×˙B
126 17 28 39 50 116 125 nn0ind N0RSRingASBSA×˙B=B×˙AN×˙A+˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B
127 126 expd N0RSRingASBSA×˙B=B×˙AN×˙A+˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B
128 127 impcom RSRingN0ASBSA×˙B=B×˙AN×˙A+˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B
129 128 imp RSRingN0ASBSA×˙B=B×˙AN×˙A+˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B