Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones19.1 |
|
2 |
|
sticksstones19.2 |
|
3 |
|
sticksstones19.3 |
|
4 |
|
sticksstones19.4 |
|
5 |
|
sticksstones19.5 |
|
6 |
|
sticksstones19.6 |
|
7 |
|
sticksstones19.7 |
|
8 |
1 2 3 4 5 6
|
sticksstones18 |
|
9 |
1 2 3 4 5 7
|
sticksstones17 |
|
10 |
7
|
a1i |
|
11 |
|
simplr |
|
12 |
11
|
fveq1d |
|
13 |
12
|
mpteq2dva |
|
14 |
8
|
ffvelrnda |
|
15 |
|
fzfid |
|
16 |
15
|
mptexd |
|
17 |
10 13 14 16
|
fvmptd |
|
18 |
6
|
a1i |
|
19 |
18
|
fveq1d |
|
20 |
19
|
fveq1d |
|
21 |
20
|
3expa |
|
22 |
21
|
mpteq2dva |
|
23 |
|
eqidd |
|
24 |
|
simplr |
|
25 |
24
|
fveq1d |
|
26 |
25
|
mpteq2dva |
|
27 |
|
simplr |
|
28 |
|
fzfid |
|
29 |
|
f1oenfi |
|
30 |
28 5 29
|
syl2anc |
|
31 |
30
|
ensymd |
|
32 |
|
enfii |
|
33 |
28 31 32
|
syl2anc |
|
34 |
33
|
adantr |
|
35 |
34
|
adantr |
|
36 |
35
|
mptexd |
|
37 |
23 26 27 36
|
fvmptd |
|
38 |
37
|
fveq1d |
|
39 |
38
|
mpteq2dva |
|
40 |
|
eqidd |
|
41 |
|
simpr |
|
42 |
41
|
fveq2d |
|
43 |
42
|
fveq2d |
|
44 |
|
f1of |
|
45 |
5 44
|
syl |
|
46 |
45
|
adantr |
|
47 |
46
|
ffvelrnda |
|
48 |
|
fvexd |
|
49 |
40 43 47 48
|
fvmptd |
|
50 |
49
|
mpteq2dva |
|
51 |
5
|
ad2antrr |
|
52 |
|
simpr |
|
53 |
|
f1ocnvfv1 |
|
54 |
51 52 53
|
syl2anc |
|
55 |
54
|
fveq2d |
|
56 |
55
|
mpteq2dva |
|
57 |
|
simpr |
|
58 |
3
|
a1i |
|
59 |
57 58
|
eleqtrd |
|
60 |
|
vex |
|
61 |
|
feq1 |
|
62 |
|
simpl |
|
63 |
62
|
fveq1d |
|
64 |
63
|
sumeq2dv |
|
65 |
64
|
eqeq1d |
|
66 |
61 65
|
anbi12d |
|
67 |
60 66
|
elab |
|
68 |
59 67
|
sylib |
|
69 |
68
|
simpld |
|
70 |
|
ffn |
|
71 |
69 70
|
syl |
|
72 |
|
dffn5 |
|
73 |
71 72
|
sylib |
|
74 |
73
|
eqcomd |
|
75 |
56 74
|
eqtrd |
|
76 |
50 75
|
eqtrd |
|
77 |
39 76
|
eqtrd |
|
78 |
22 77
|
eqtrd |
|
79 |
17 78
|
eqtrd |
|
80 |
79
|
ralrimiva |
|
81 |
6
|
a1i |
|
82 |
|
simplr |
|
83 |
82
|
fveq1d |
|
84 |
83
|
mpteq2dva |
|
85 |
9
|
ffvelrnda |
|
86 |
33
|
adantr |
|
87 |
86
|
mptexd |
|
88 |
81 84 85 87
|
fvmptd |
|
89 |
7
|
a1i |
|
90 |
|
simplr |
|
91 |
90
|
fveq1d |
|
92 |
91
|
mpteq2dva |
|
93 |
|
simplr |
|
94 |
|
fzfid |
|
95 |
94
|
mptexd |
|
96 |
89 92 93 95
|
fvmptd |
|
97 |
96
|
fveq1d |
|
98 |
97
|
mpteq2dva |
|
99 |
|
eqidd |
|
100 |
|
simpr |
|
101 |
100
|
fveq2d |
|
102 |
101
|
fveq2d |
|
103 |
|
f1ocnv |
|
104 |
5 103
|
syl |
|
105 |
|
f1of |
|
106 |
104 105
|
syl |
|
107 |
106
|
adantr |
|
108 |
107
|
ffvelrnda |
|
109 |
|
fvexd |
|
110 |
99 102 108 109
|
fvmptd |
|
111 |
110
|
mpteq2dva |
|
112 |
5
|
ad2antrr |
|
113 |
|
simpr |
|
114 |
|
f1ocnvfv2 |
|
115 |
112 113 114
|
syl2anc |
|
116 |
115
|
fveq2d |
|
117 |
116
|
mpteq2dva |
|
118 |
|
simpr |
|
119 |
4
|
a1i |
|
120 |
118 119
|
eleqtrd |
|
121 |
|
vex |
|
122 |
|
feq1 |
|
123 |
|
simpl |
|
124 |
123
|
fveq1d |
|
125 |
124
|
sumeq2dv |
|
126 |
125
|
eqeq1d |
|
127 |
122 126
|
anbi12d |
|
128 |
121 127
|
elab |
|
129 |
120 128
|
sylib |
|
130 |
129
|
simpld |
|
131 |
|
ffn |
|
132 |
130 131
|
syl |
|
133 |
|
dffn5 |
|
134 |
132 133
|
sylib |
|
135 |
134
|
eqcomd |
|
136 |
117 135
|
eqtrd |
|
137 |
111 136
|
eqtrd |
|
138 |
98 137
|
eqtrd |
|
139 |
88 138
|
eqtrd |
|
140 |
139
|
ralrimiva |
|
141 |
8 9 80 140
|
2fvidf1od |
|