| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sticksstones19.1 |  | 
						
							| 2 |  | sticksstones19.2 |  | 
						
							| 3 |  | sticksstones19.3 |  | 
						
							| 4 |  | sticksstones19.4 |  | 
						
							| 5 |  | sticksstones19.5 |  | 
						
							| 6 |  | sticksstones19.6 |  | 
						
							| 7 |  | sticksstones19.7 |  | 
						
							| 8 | 1 2 3 4 5 6 | sticksstones18 |  | 
						
							| 9 | 1 2 3 4 5 7 | sticksstones17 |  | 
						
							| 10 | 7 | a1i |  | 
						
							| 11 |  | simplr |  | 
						
							| 12 | 11 | fveq1d |  | 
						
							| 13 | 12 | mpteq2dva |  | 
						
							| 14 | 8 | ffvelcdmda |  | 
						
							| 15 |  | fzfid |  | 
						
							| 16 | 15 | mptexd |  | 
						
							| 17 | 10 13 14 16 | fvmptd |  | 
						
							| 18 | 6 | a1i |  | 
						
							| 19 | 18 | fveq1d |  | 
						
							| 20 | 19 | fveq1d |  | 
						
							| 21 | 20 | 3expa |  | 
						
							| 22 | 21 | mpteq2dva |  | 
						
							| 23 |  | eqidd |  | 
						
							| 24 |  | simplr |  | 
						
							| 25 | 24 | fveq1d |  | 
						
							| 26 | 25 | mpteq2dva |  | 
						
							| 27 |  | simplr |  | 
						
							| 28 |  | fzfid |  | 
						
							| 29 |  | f1oenfi |  | 
						
							| 30 | 28 5 29 | syl2anc |  | 
						
							| 31 | 30 | ensymd |  | 
						
							| 32 |  | enfii |  | 
						
							| 33 | 28 31 32 | syl2anc |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 | 34 | adantr |  | 
						
							| 36 | 35 | mptexd |  | 
						
							| 37 | 23 26 27 36 | fvmptd |  | 
						
							| 38 | 37 | fveq1d |  | 
						
							| 39 | 38 | mpteq2dva |  | 
						
							| 40 |  | eqidd |  | 
						
							| 41 |  | simpr |  | 
						
							| 42 | 41 | fveq2d |  | 
						
							| 43 | 42 | fveq2d |  | 
						
							| 44 |  | f1of |  | 
						
							| 45 | 5 44 | syl |  | 
						
							| 46 | 45 | adantr |  | 
						
							| 47 | 46 | ffvelcdmda |  | 
						
							| 48 |  | fvexd |  | 
						
							| 49 | 40 43 47 48 | fvmptd |  | 
						
							| 50 | 49 | mpteq2dva |  | 
						
							| 51 | 5 | ad2antrr |  | 
						
							| 52 |  | simpr |  | 
						
							| 53 |  | f1ocnvfv1 |  | 
						
							| 54 | 51 52 53 | syl2anc |  | 
						
							| 55 | 54 | fveq2d |  | 
						
							| 56 | 55 | mpteq2dva |  | 
						
							| 57 |  | simpr |  | 
						
							| 58 | 3 | a1i |  | 
						
							| 59 | 57 58 | eleqtrd |  | 
						
							| 60 |  | vex |  | 
						
							| 61 |  | feq1 |  | 
						
							| 62 |  | simpl |  | 
						
							| 63 | 62 | fveq1d |  | 
						
							| 64 | 63 | sumeq2dv |  | 
						
							| 65 | 64 | eqeq1d |  | 
						
							| 66 | 61 65 | anbi12d |  | 
						
							| 67 | 60 66 | elab |  | 
						
							| 68 | 59 67 | sylib |  | 
						
							| 69 | 68 | simpld |  | 
						
							| 70 |  | ffn |  | 
						
							| 71 | 69 70 | syl |  | 
						
							| 72 |  | dffn5 |  | 
						
							| 73 | 71 72 | sylib |  | 
						
							| 74 | 73 | eqcomd |  | 
						
							| 75 | 56 74 | eqtrd |  | 
						
							| 76 | 50 75 | eqtrd |  | 
						
							| 77 | 39 76 | eqtrd |  | 
						
							| 78 | 22 77 | eqtrd |  | 
						
							| 79 | 17 78 | eqtrd |  | 
						
							| 80 | 79 | ralrimiva |  | 
						
							| 81 | 6 | a1i |  | 
						
							| 82 |  | simplr |  | 
						
							| 83 | 82 | fveq1d |  | 
						
							| 84 | 83 | mpteq2dva |  | 
						
							| 85 | 9 | ffvelcdmda |  | 
						
							| 86 | 33 | adantr |  | 
						
							| 87 | 86 | mptexd |  | 
						
							| 88 | 81 84 85 87 | fvmptd |  | 
						
							| 89 | 7 | a1i |  | 
						
							| 90 |  | simplr |  | 
						
							| 91 | 90 | fveq1d |  | 
						
							| 92 | 91 | mpteq2dva |  | 
						
							| 93 |  | simplr |  | 
						
							| 94 |  | fzfid |  | 
						
							| 95 | 94 | mptexd |  | 
						
							| 96 | 89 92 93 95 | fvmptd |  | 
						
							| 97 | 96 | fveq1d |  | 
						
							| 98 | 97 | mpteq2dva |  | 
						
							| 99 |  | eqidd |  | 
						
							| 100 |  | simpr |  | 
						
							| 101 | 100 | fveq2d |  | 
						
							| 102 | 101 | fveq2d |  | 
						
							| 103 |  | f1ocnv |  | 
						
							| 104 | 5 103 | syl |  | 
						
							| 105 |  | f1of |  | 
						
							| 106 | 104 105 | syl |  | 
						
							| 107 | 106 | adantr |  | 
						
							| 108 | 107 | ffvelcdmda |  | 
						
							| 109 |  | fvexd |  | 
						
							| 110 | 99 102 108 109 | fvmptd |  | 
						
							| 111 | 110 | mpteq2dva |  | 
						
							| 112 | 5 | ad2antrr |  | 
						
							| 113 |  | simpr |  | 
						
							| 114 |  | f1ocnvfv2 |  | 
						
							| 115 | 112 113 114 | syl2anc |  | 
						
							| 116 | 115 | fveq2d |  | 
						
							| 117 | 116 | mpteq2dva |  | 
						
							| 118 |  | simpr |  | 
						
							| 119 | 4 | a1i |  | 
						
							| 120 | 118 119 | eleqtrd |  | 
						
							| 121 |  | vex |  | 
						
							| 122 |  | feq1 |  | 
						
							| 123 |  | simpl |  | 
						
							| 124 | 123 | fveq1d |  | 
						
							| 125 | 124 | sumeq2dv |  | 
						
							| 126 | 125 | eqeq1d |  | 
						
							| 127 | 122 126 | anbi12d |  | 
						
							| 128 | 121 127 | elab |  | 
						
							| 129 | 120 128 | sylib |  | 
						
							| 130 | 129 | simpld |  | 
						
							| 131 |  | ffn |  | 
						
							| 132 | 130 131 | syl |  | 
						
							| 133 |  | dffn5 |  | 
						
							| 134 | 132 133 | sylib |  | 
						
							| 135 | 134 | eqcomd |  | 
						
							| 136 | 117 135 | eqtrd |  | 
						
							| 137 | 111 136 | eqtrd |  | 
						
							| 138 | 98 137 | eqtrd |  | 
						
							| 139 | 88 138 | eqtrd |  | 
						
							| 140 | 139 | ralrimiva |  | 
						
							| 141 | 8 9 80 140 | 2fvidf1od |  |