Metamath Proof Explorer


Theorem sticksstones19

Description: Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024)

Ref Expression
Hypotheses sticksstones19.1 φN0
sticksstones19.2 φK0
sticksstones19.3 A=g|g:1K0i=1Kgi=N
sticksstones19.4 B=h|h:S0iShi=N
sticksstones19.5 φZ:1K1-1 ontoS
sticksstones19.6 F=aAxSaZ-1x
sticksstones19.7 G=bBy1KbZy
Assertion sticksstones19 φF:A1-1 ontoB

Proof

Step Hyp Ref Expression
1 sticksstones19.1 φN0
2 sticksstones19.2 φK0
3 sticksstones19.3 A=g|g:1K0i=1Kgi=N
4 sticksstones19.4 B=h|h:S0iShi=N
5 sticksstones19.5 φZ:1K1-1 ontoS
6 sticksstones19.6 F=aAxSaZ-1x
7 sticksstones19.7 G=bBy1KbZy
8 1 2 3 4 5 6 sticksstones18 φF:AB
9 1 2 3 4 5 7 sticksstones17 φG:BA
10 7 a1i φcAG=bBy1KbZy
11 simplr φcAb=Fcy1Kb=Fc
12 11 fveq1d φcAb=Fcy1KbZy=FcZy
13 12 mpteq2dva φcAb=Fcy1KbZy=y1KFcZy
14 8 ffvelcdmda φcAFcB
15 fzfid φcA1KFin
16 15 mptexd φcAy1KFcZyV
17 10 13 14 16 fvmptd φcAGFc=y1KFcZy
18 6 a1i φcAy1KF=aAxSaZ-1x
19 18 fveq1d φcAy1KFc=aAxSaZ-1xc
20 19 fveq1d φcAy1KFcZy=aAxSaZ-1xcZy
21 20 3expa φcAy1KFcZy=aAxSaZ-1xcZy
22 21 mpteq2dva φcAy1KFcZy=y1KaAxSaZ-1xcZy
23 eqidd φcAy1KaAxSaZ-1x=aAxSaZ-1x
24 simplr φcAy1Ka=cxSa=c
25 24 fveq1d φcAy1Ka=cxSaZ-1x=cZ-1x
26 25 mpteq2dva φcAy1Ka=cxSaZ-1x=xScZ-1x
27 simplr φcAy1KcA
28 fzfid φ1KFin
29 f1oenfi 1KFinZ:1K1-1 ontoS1KS
30 28 5 29 syl2anc φ1KS
31 30 ensymd φS1K
32 enfii 1KFinS1KSFin
33 28 31 32 syl2anc φSFin
34 33 adantr φcASFin
35 34 adantr φcAy1KSFin
36 35 mptexd φcAy1KxScZ-1xV
37 23 26 27 36 fvmptd φcAy1KaAxSaZ-1xc=xScZ-1x
38 37 fveq1d φcAy1KaAxSaZ-1xcZy=xScZ-1xZy
39 38 mpteq2dva φcAy1KaAxSaZ-1xcZy=y1KxScZ-1xZy
40 eqidd φcAy1KxScZ-1x=xScZ-1x
41 simpr φcAy1Kx=Zyx=Zy
42 41 fveq2d φcAy1Kx=ZyZ-1x=Z-1Zy
43 42 fveq2d φcAy1Kx=ZycZ-1x=cZ-1Zy
44 f1of Z:1K1-1 ontoSZ:1KS
45 5 44 syl φZ:1KS
46 45 adantr φcAZ:1KS
47 46 ffvelcdmda φcAy1KZyS
48 fvexd φcAy1KcZ-1ZyV
49 40 43 47 48 fvmptd φcAy1KxScZ-1xZy=cZ-1Zy
50 49 mpteq2dva φcAy1KxScZ-1xZy=y1KcZ-1Zy
51 5 ad2antrr φcAy1KZ:1K1-1 ontoS
52 simpr φcAy1Ky1K
53 f1ocnvfv1 Z:1K1-1 ontoSy1KZ-1Zy=y
54 51 52 53 syl2anc φcAy1KZ-1Zy=y
55 54 fveq2d φcAy1KcZ-1Zy=cy
56 55 mpteq2dva φcAy1KcZ-1Zy=y1Kcy
57 simpr φcAcA
58 3 a1i φcAA=g|g:1K0i=1Kgi=N
59 57 58 eleqtrd φcAcg|g:1K0i=1Kgi=N
60 vex cV
61 feq1 g=cg:1K0c:1K0
62 simpl g=ci1Kg=c
63 62 fveq1d g=ci1Kgi=ci
64 63 sumeq2dv g=ci=1Kgi=i=1Kci
65 64 eqeq1d g=ci=1Kgi=Ni=1Kci=N
66 61 65 anbi12d g=cg:1K0i=1Kgi=Nc:1K0i=1Kci=N
67 60 66 elab cg|g:1K0i=1Kgi=Nc:1K0i=1Kci=N
68 59 67 sylib φcAc:1K0i=1Kci=N
69 68 simpld φcAc:1K0
70 ffn c:1K0cFn1K
71 69 70 syl φcAcFn1K
72 dffn5 cFn1Kc=y1Kcy
73 71 72 sylib φcAc=y1Kcy
74 73 eqcomd φcAy1Kcy=c
75 56 74 eqtrd φcAy1KcZ-1Zy=c
76 50 75 eqtrd φcAy1KxScZ-1xZy=c
77 39 76 eqtrd φcAy1KaAxSaZ-1xcZy=c
78 22 77 eqtrd φcAy1KFcZy=c
79 17 78 eqtrd φcAGFc=c
80 79 ralrimiva φcAGFc=c
81 6 a1i φdBF=aAxSaZ-1x
82 simplr φdBa=GdxSa=Gd
83 82 fveq1d φdBa=GdxSaZ-1x=GdZ-1x
84 83 mpteq2dva φdBa=GdxSaZ-1x=xSGdZ-1x
85 9 ffvelcdmda φdBGdA
86 33 adantr φdBSFin
87 86 mptexd φdBxSGdZ-1xV
88 81 84 85 87 fvmptd φdBFGd=xSGdZ-1x
89 7 a1i φdBxSG=bBy1KbZy
90 simplr φdBxSb=dy1Kb=d
91 90 fveq1d φdBxSb=dy1KbZy=dZy
92 91 mpteq2dva φdBxSb=dy1KbZy=y1KdZy
93 simplr φdBxSdB
94 fzfid φdBxS1KFin
95 94 mptexd φdBxSy1KdZyV
96 89 92 93 95 fvmptd φdBxSGd=y1KdZy
97 96 fveq1d φdBxSGdZ-1x=y1KdZyZ-1x
98 97 mpteq2dva φdBxSGdZ-1x=xSy1KdZyZ-1x
99 eqidd φdBxSy1KdZy=y1KdZy
100 simpr φdBxSy=Z-1xy=Z-1x
101 100 fveq2d φdBxSy=Z-1xZy=ZZ-1x
102 101 fveq2d φdBxSy=Z-1xdZy=dZZ-1x
103 f1ocnv Z:1K1-1 ontoSZ-1:S1-1 onto1K
104 5 103 syl φZ-1:S1-1 onto1K
105 f1of Z-1:S1-1 onto1KZ-1:S1K
106 104 105 syl φZ-1:S1K
107 106 adantr φdBZ-1:S1K
108 107 ffvelcdmda φdBxSZ-1x1K
109 fvexd φdBxSdZZ-1xV
110 99 102 108 109 fvmptd φdBxSy1KdZyZ-1x=dZZ-1x
111 110 mpteq2dva φdBxSy1KdZyZ-1x=xSdZZ-1x
112 5 ad2antrr φdBxSZ:1K1-1 ontoS
113 simpr φdBxSxS
114 f1ocnvfv2 Z:1K1-1 ontoSxSZZ-1x=x
115 112 113 114 syl2anc φdBxSZZ-1x=x
116 115 fveq2d φdBxSdZZ-1x=dx
117 116 mpteq2dva φdBxSdZZ-1x=xSdx
118 simpr φdBdB
119 4 a1i φdBB=h|h:S0iShi=N
120 118 119 eleqtrd φdBdh|h:S0iShi=N
121 vex dV
122 feq1 h=dh:S0d:S0
123 simpl h=diSh=d
124 123 fveq1d h=diShi=di
125 124 sumeq2dv h=diShi=iSdi
126 125 eqeq1d h=diShi=NiSdi=N
127 122 126 anbi12d h=dh:S0iShi=Nd:S0iSdi=N
128 121 127 elab dh|h:S0iShi=Nd:S0iSdi=N
129 120 128 sylib φdBd:S0iSdi=N
130 129 simpld φdBd:S0
131 ffn d:S0dFnS
132 130 131 syl φdBdFnS
133 dffn5 dFnSd=xSdx
134 132 133 sylib φdBd=xSdx
135 134 eqcomd φdBxSdx=d
136 117 135 eqtrd φdBxSdZZ-1x=d
137 111 136 eqtrd φdBxSy1KdZyZ-1x=d
138 98 137 eqtrd φdBxSGdZ-1x=d
139 88 138 eqtrd φdBFGd=d
140 139 ralrimiva φdBFGd=d
141 8 9 80 140 2fvidf1od φF:A1-1 ontoB