| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stirlinglem14.1 |
|
| 2 |
|
stirlinglem14.2 |
|
| 3 |
1 2
|
stirlinglem13 |
|
| 4 |
|
simpl |
|
| 5 |
4
|
rpefcld |
|
| 6 |
|
nnuz |
|
| 7 |
|
1zzd |
|
| 8 |
|
efcn |
|
| 9 |
8
|
a1i |
|
| 10 |
|
nnnn0 |
|
| 11 |
|
faccl |
|
| 12 |
|
nncn |
|
| 13 |
10 11 12
|
3syl |
|
| 14 |
|
2cnd |
|
| 15 |
|
nncn |
|
| 16 |
14 15
|
mulcld |
|
| 17 |
16
|
sqrtcld |
|
| 18 |
|
epr |
|
| 19 |
|
rpcn |
|
| 20 |
18 19
|
ax-mp |
|
| 21 |
20
|
a1i |
|
| 22 |
|
0re |
|
| 23 |
|
epos |
|
| 24 |
22 23
|
gtneii |
|
| 25 |
24
|
a1i |
|
| 26 |
15 21 25
|
divcld |
|
| 27 |
26 10
|
expcld |
|
| 28 |
17 27
|
mulcld |
|
| 29 |
|
2rp |
|
| 30 |
29
|
a1i |
|
| 31 |
|
nnrp |
|
| 32 |
30 31
|
rpmulcld |
|
| 33 |
32
|
sqrtgt0d |
|
| 34 |
33
|
gt0ne0d |
|
| 35 |
|
nnne0 |
|
| 36 |
15 21 35 25
|
divne0d |
|
| 37 |
|
nnz |
|
| 38 |
26 36 37
|
expne0d |
|
| 39 |
17 27 34 38
|
mulne0d |
|
| 40 |
13 28 39
|
divcld |
|
| 41 |
1
|
fvmpt2 |
|
| 42 |
40 41
|
mpdan |
|
| 43 |
42 40
|
eqeltrd |
|
| 44 |
|
nnne0 |
|
| 45 |
10 11 44
|
3syl |
|
| 46 |
13 28 45 39
|
divne0d |
|
| 47 |
42 46
|
eqnetrd |
|
| 48 |
43 47
|
logcld |
|
| 49 |
2 48
|
fmpti |
|
| 50 |
49
|
a1i |
|
| 51 |
|
simpr |
|
| 52 |
4
|
recnd |
|
| 53 |
6 7 9 50 51 52
|
climcncf |
|
| 54 |
8
|
elexi |
|
| 55 |
|
nnex |
|
| 56 |
55
|
mptex |
|
| 57 |
2 56
|
eqeltri |
|
| 58 |
54 57
|
coex |
|
| 59 |
58
|
a1i |
|
| 60 |
55
|
mptex |
|
| 61 |
1 60
|
eqeltri |
|
| 62 |
61
|
a1i |
|
| 63 |
|
1zzd |
|
| 64 |
2
|
funmpt2 |
|
| 65 |
|
id |
|
| 66 |
|
rabid2 |
|
| 67 |
1
|
stirlinglem2 |
|
| 68 |
|
relogcl |
|
| 69 |
|
elex |
|
| 70 |
67 68 69
|
3syl |
|
| 71 |
66 70
|
mprgbir |
|
| 72 |
2
|
dmmpt |
|
| 73 |
71 72
|
eqtr4i |
|
| 74 |
65 73
|
eleqtrdi |
|
| 75 |
|
fvco |
|
| 76 |
64 74 75
|
sylancr |
|
| 77 |
1
|
a1i |
|
| 78 |
|
simpr |
|
| 79 |
78
|
fveq2d |
|
| 80 |
78
|
oveq2d |
|
| 81 |
80
|
fveq2d |
|
| 82 |
78
|
oveq1d |
|
| 83 |
82 78
|
oveq12d |
|
| 84 |
81 83
|
oveq12d |
|
| 85 |
79 84
|
oveq12d |
|
| 86 |
|
nnnn0 |
|
| 87 |
|
faccl |
|
| 88 |
|
nncn |
|
| 89 |
86 87 88
|
3syl |
|
| 90 |
|
2cnd |
|
| 91 |
|
nncn |
|
| 92 |
90 91
|
mulcld |
|
| 93 |
92
|
sqrtcld |
|
| 94 |
20
|
a1i |
|
| 95 |
24
|
a1i |
|
| 96 |
91 94 95
|
divcld |
|
| 97 |
96 86
|
expcld |
|
| 98 |
93 97
|
mulcld |
|
| 99 |
29
|
a1i |
|
| 100 |
|
nnrp |
|
| 101 |
99 100
|
rpmulcld |
|
| 102 |
101
|
sqrtgt0d |
|
| 103 |
102
|
gt0ne0d |
|
| 104 |
|
nnne0 |
|
| 105 |
91 94 104 95
|
divne0d |
|
| 106 |
|
nnz |
|
| 107 |
96 105 106
|
expne0d |
|
| 108 |
93 97 103 107
|
mulne0d |
|
| 109 |
89 98 108
|
divcld |
|
| 110 |
77 85 65 109
|
fvmptd |
|
| 111 |
110 109
|
eqeltrd |
|
| 112 |
|
nnne0 |
|
| 113 |
86 87 112
|
3syl |
|
| 114 |
89 98 113 108
|
divne0d |
|
| 115 |
110 114
|
eqnetrd |
|
| 116 |
111 115
|
logcld |
|
| 117 |
|
nfcv |
|
| 118 |
|
nfcv |
|
| 119 |
|
nfmpt1 |
|
| 120 |
1 119
|
nfcxfr |
|
| 121 |
120 117
|
nffv |
|
| 122 |
118 121
|
nffv |
|
| 123 |
|
2fveq3 |
|
| 124 |
117 122 123 2
|
fvmptf |
|
| 125 |
116 124
|
mpdan |
|
| 126 |
125
|
fveq2d |
|
| 127 |
|
eflog |
|
| 128 |
111 115 127
|
syl2anc |
|
| 129 |
76 126 128
|
3eqtrd |
|
| 130 |
129
|
adantl |
|
| 131 |
6 59 62 63 130
|
climeq |
|
| 132 |
131
|
mptru |
|
| 133 |
53 132
|
sylib |
|
| 134 |
|
breq2 |
|
| 135 |
134
|
rspcev |
|
| 136 |
5 133 135
|
syl2anc |
|
| 137 |
136
|
rexlimiva |
|
| 138 |
3 137
|
ax-mp |
|