Metamath Proof Explorer


Theorem stirlinglem14

Description: The sequence A converges to a positive real. This proves that the Stirling's formula converges to the factorial, up to a constant. In another theorem, using Wallis' formula for π& , such constant is exactly determined, thus proving the Stirling's formula. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses stirlinglem14.1 A=nn!2nnen
stirlinglem14.2 B=nlogAn
Assertion stirlinglem14 c+Ac

Proof

Step Hyp Ref Expression
1 stirlinglem14.1 A=nn!2nnen
2 stirlinglem14.2 B=nlogAn
3 1 2 stirlinglem13 dBd
4 simpl dBdd
5 4 rpefcld dBded+
6 nnuz =1
7 1zzd dBd1
8 efcn exp:cn
9 8 a1i dBdexp:cn
10 nnnn0 nn0
11 faccl n0n!
12 nncn n!n!
13 10 11 12 3syl nn!
14 2cnd n2
15 nncn nn
16 14 15 mulcld n2n
17 16 sqrtcld n2n
18 epr e+
19 rpcn e+e
20 18 19 ax-mp e
21 20 a1i ne
22 0re 0
23 epos 0<e
24 22 23 gtneii e0
25 24 a1i ne0
26 15 21 25 divcld nne
27 26 10 expcld nnen
28 17 27 mulcld n2nnen
29 2rp 2+
30 29 a1i n2+
31 nnrp nn+
32 30 31 rpmulcld n2n+
33 32 sqrtgt0d n0<2n
34 33 gt0ne0d n2n0
35 nnne0 nn0
36 15 21 35 25 divne0d nne0
37 nnz nn
38 26 36 37 expne0d nnen0
39 17 27 34 38 mulne0d n2nnen0
40 13 28 39 divcld nn!2nnen
41 1 fvmpt2 nn!2nnenAn=n!2nnen
42 40 41 mpdan nAn=n!2nnen
43 42 40 eqeltrd nAn
44 nnne0 n!n!0
45 10 11 44 3syl nn!0
46 13 28 45 39 divne0d nn!2nnen0
47 42 46 eqnetrd nAn0
48 43 47 logcld nlogAn
49 2 48 fmpti B:
50 49 a1i dBdB:
51 simpr dBdBd
52 4 recnd dBdd
53 6 7 9 50 51 52 climcncf dBdexpBed
54 8 elexi expV
55 nnex V
56 55 mptex nlogAnV
57 2 56 eqeltri BV
58 54 57 coex expBV
59 58 a1i expBV
60 55 mptex nn!2nnenV
61 1 60 eqeltri AV
62 61 a1i AV
63 1zzd 1
64 2 funmpt2 FunB
65 id kk
66 rabid2 =n|logAnVnlogAnV
67 1 stirlinglem2 nAn+
68 relogcl An+logAn
69 elex logAnlogAnV
70 67 68 69 3syl nlogAnV
71 66 70 mprgbir =n|logAnV
72 2 dmmpt domB=n|logAnV
73 71 72 eqtr4i =domB
74 65 73 eleqtrdi kkdomB
75 fvco FunBkdomBexpBk=eBk
76 64 74 75 sylancr kexpBk=eBk
77 1 a1i kA=nn!2nnen
78 simpr kn=kn=k
79 78 fveq2d kn=kn!=k!
80 78 oveq2d kn=k2n=2k
81 80 fveq2d kn=k2n=2k
82 78 oveq1d kn=kne=ke
83 82 78 oveq12d kn=knen=kek
84 81 83 oveq12d kn=k2nnen=2kkek
85 79 84 oveq12d kn=kn!2nnen=k!2kkek
86 nnnn0 kk0
87 faccl k0k!
88 nncn k!k!
89 86 87 88 3syl kk!
90 2cnd k2
91 nncn kk
92 90 91 mulcld k2k
93 92 sqrtcld k2k
94 20 a1i ke
95 24 a1i ke0
96 91 94 95 divcld kke
97 96 86 expcld kkek
98 93 97 mulcld k2kkek
99 29 a1i k2+
100 nnrp kk+
101 99 100 rpmulcld k2k+
102 101 sqrtgt0d k0<2k
103 102 gt0ne0d k2k0
104 nnne0 kk0
105 91 94 104 95 divne0d kke0
106 nnz kk
107 96 105 106 expne0d kkek0
108 93 97 103 107 mulne0d k2kkek0
109 89 98 108 divcld kk!2kkek
110 77 85 65 109 fvmptd kAk=k!2kkek
111 110 109 eqeltrd kAk
112 nnne0 k!k!0
113 86 87 112 3syl kk!0
114 89 98 113 108 divne0d kk!2kkek0
115 110 114 eqnetrd kAk0
116 111 115 logcld klogAk
117 nfcv _nk
118 nfcv _nlog
119 nfmpt1 _nnn!2nnen
120 1 119 nfcxfr _nA
121 120 117 nffv _nAk
122 118 121 nffv _nlogAk
123 2fveq3 n=klogAn=logAk
124 117 122 123 2 fvmptf klogAkBk=logAk
125 116 124 mpdan kBk=logAk
126 125 fveq2d keBk=elogAk
127 eflog AkAk0elogAk=Ak
128 111 115 127 syl2anc kelogAk=Ak
129 76 126 128 3eqtrd kexpBk=Ak
130 129 adantl kexpBk=Ak
131 6 59 62 63 130 climeq expBedAed
132 131 mptru expBedAed
133 53 132 sylib dBdAed
134 breq2 c=edAcAed
135 134 rspcev ed+Aedc+Ac
136 5 133 135 syl2anc dBdc+Ac
137 136 rexlimiva dBdc+Ac
138 3 137 ax-mp c+Ac