Description: This lemma is used to prove that there exists a function x as in the proof of Lemma 2 in BrosowskiDeutsh p. 91: assuming that r is a finite subset of W , x indexes a finite set of functions in the subalgebra (of the Stone Weierstrass theorem), such that for all i ranging in the finite indexing set, 0 ≤ x_i ≤ 1, x_i < ε / m on V(t_i), and x_i > 1 - ε / m on B . Here D is used to represent A in the paper's Lemma 2 (because A is used for the subalgebra), M is used to represent m in the paper, E is used to represent ε, and v_i is used to represent V(t_i). W is just a local definition, used to shorten statements. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem39.1 | |
|
stoweidlem39.2 | |
||
stoweidlem39.3 | |
||
stoweidlem39.4 | |
||
stoweidlem39.5 | |
||
stoweidlem39.6 | |
||
stoweidlem39.7 | |
||
stoweidlem39.8 | |
||
stoweidlem39.9 | |
||
stoweidlem39.10 | |
||
stoweidlem39.11 | |
||
stoweidlem39.12 | |
||
stoweidlem39.13 | |
||
Assertion | stoweidlem39 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem39.1 | |
|
2 | stoweidlem39.2 | |
|
3 | stoweidlem39.3 | |
|
4 | stoweidlem39.4 | |
|
5 | stoweidlem39.5 | |
|
6 | stoweidlem39.6 | |
|
7 | stoweidlem39.7 | |
|
8 | stoweidlem39.8 | |
|
9 | stoweidlem39.9 | |
|
10 | stoweidlem39.10 | |
|
11 | stoweidlem39.11 | |
|
12 | stoweidlem39.12 | |
|
13 | stoweidlem39.13 | |
|
14 | 8 9 | jca | |
15 | ssn0 | |
|
16 | unieq | |
|
17 | uni0 | |
|
18 | 16 17 | eqtrdi | |
19 | 18 | necon3i | |
20 | 14 15 19 | 3syl | |
21 | 20 | neneqd | |
22 | elinel2 | |
|
23 | 7 22 | syl | |
24 | fz1f1o | |
|
25 | pm2.53 | |
|
26 | 23 24 25 | 3syl | |
27 | 21 26 | mpd | |
28 | oveq2 | |
|
29 | 28 | f1oeq2d | |
30 | 29 | exbidv | |
31 | 30 | rspcev | |
32 | 27 31 | syl | |
33 | f1of | |
|
34 | 33 | adantl | |
35 | simpll | |
|
36 | elinel1 | |
|
37 | 36 | elpwid | |
38 | 35 7 37 | 3syl | |
39 | 34 38 | fssd | |
40 | 8 | ad2antrr | |
41 | dff1o2 | |
|
42 | 41 | simp3bi | |
43 | 42 | unieqd | |
44 | 43 | adantl | |
45 | 40 44 | sseqtrrd | |
46 | nfv | |
|
47 | 1 46 | nfan | |
48 | nfv | |
|
49 | 47 48 | nfan | |
50 | nfv | |
|
51 | 2 50 | nfan | |
52 | nfv | |
|
53 | 51 52 | nfan | |
54 | nfv | |
|
55 | 3 54 | nfan | |
56 | nfv | |
|
57 | 55 56 | nfan | |
58 | eqid | |
|
59 | simplr | |
|
60 | simpr | |
|
61 | 10 | ad2antrr | |
62 | 11 | sselda | |
63 | notnot | |
|
64 | 63 | intnand | |
65 | 64 | adantl | |
66 | eldif | |
|
67 | 65 66 | sylnibr | |
68 | 4 | eleq2i | |
69 | 67 68 | sylnibr | |
70 | 62 69 | eldifd | |
71 | 70 | ralrimiva | |
72 | dfss3 | |
|
73 | 71 72 | sylibr | |
74 | 73 | ad2antrr | |
75 | 12 | ad2antrr | |
76 | 13 | ad2antrr | |
77 | 23 | ad2antrr | |
78 | mptfi | |
|
79 | rnfi | |
|
80 | 77 78 79 | 3syl | |
81 | 49 53 57 5 6 58 38 59 60 61 74 75 76 80 | stoweidlem31 | |
82 | 39 45 81 | 3jca | |
83 | 82 | ex | |
84 | 83 | eximdv | |
85 | 84 | reximdva | |
86 | 32 85 | mpd | |