Metamath Proof Explorer


Theorem stoweidlem39

Description: This lemma is used to prove that there exists a function x as in the proof of Lemma 2 in BrosowskiDeutsh p. 91: assuming that r is a finite subset of W , x indexes a finite set of functions in the subalgebra (of the Stone Weierstrass theorem), such that for all i ranging in the finite indexing set, 0 ≤ x_i ≤ 1, x_i < ε / m on V(t_i), and x_i > 1 - ε / m on B . Here D is used to represent A in the paper's Lemma 2 (because A is used for the subalgebra), M is used to represent m in the paper, E is used to represent ε, and v_i is used to represent V(t_i). W is just a local definition, used to shorten statements. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem39.1 hφ
stoweidlem39.2 tφ
stoweidlem39.3 wφ
stoweidlem39.4 U=TB
stoweidlem39.5 Y=hA|tT0htht1
stoweidlem39.6 W=wJ|e+hAtT0htht1twht<etTU1e<ht
stoweidlem39.7 φr𝒫WFin
stoweidlem39.8 φDr
stoweidlem39.9 φD
stoweidlem39.10 φE+
stoweidlem39.11 φBT
stoweidlem39.12 φWV
stoweidlem39.13 φAV
Assertion stoweidlem39 φmvv:1mWDranvxx:1mYi1mtvixit<EmtB1Em<xit

Proof

Step Hyp Ref Expression
1 stoweidlem39.1 hφ
2 stoweidlem39.2 tφ
3 stoweidlem39.3 wφ
4 stoweidlem39.4 U=TB
5 stoweidlem39.5 Y=hA|tT0htht1
6 stoweidlem39.6 W=wJ|e+hAtT0htht1twht<etTU1e<ht
7 stoweidlem39.7 φr𝒫WFin
8 stoweidlem39.8 φDr
9 stoweidlem39.9 φD
10 stoweidlem39.10 φE+
11 stoweidlem39.11 φBT
12 stoweidlem39.12 φWV
13 stoweidlem39.13 φAV
14 8 9 jca φDrD
15 ssn0 DrDr
16 unieq r=r=
17 uni0 =
18 16 17 eqtrdi r=r=
19 18 necon3i rr
20 14 15 19 3syl φr
21 20 neneqd φ¬r=
22 elinel2 r𝒫WFinrFin
23 7 22 syl φrFin
24 fz1f1o rFinr=rvv:1r1-1 ontor
25 pm2.53 r=rvv:1r1-1 ontor¬r=rvv:1r1-1 ontor
26 23 24 25 3syl φ¬r=rvv:1r1-1 ontor
27 21 26 mpd φrvv:1r1-1 ontor
28 oveq2 m=r1m=1r
29 28 f1oeq2d m=rv:1m1-1 ontorv:1r1-1 ontor
30 29 exbidv m=rvv:1m1-1 ontorvv:1r1-1 ontor
31 30 rspcev rvv:1r1-1 ontormvv:1m1-1 ontor
32 27 31 syl φmvv:1m1-1 ontor
33 f1of v:1m1-1 ontorv:1mr
34 33 adantl φmv:1m1-1 ontorv:1mr
35 simpll φmv:1m1-1 ontorφ
36 elinel1 r𝒫WFinr𝒫W
37 36 elpwid r𝒫WFinrW
38 35 7 37 3syl φmv:1m1-1 ontorrW
39 34 38 fssd φmv:1m1-1 ontorv:1mW
40 8 ad2antrr φmv:1m1-1 ontorDr
41 dff1o2 v:1m1-1 ontorvFn1mFunv-1ranv=r
42 41 simp3bi v:1m1-1 ontorranv=r
43 42 unieqd v:1m1-1 ontorranv=r
44 43 adantl φmv:1m1-1 ontorranv=r
45 40 44 sseqtrrd φmv:1m1-1 ontorDranv
46 nfv hm
47 1 46 nfan hφm
48 nfv hv:1m1-1 ontor
49 47 48 nfan hφmv:1m1-1 ontor
50 nfv tm
51 2 50 nfan tφm
52 nfv tv:1m1-1 ontor
53 51 52 nfan tφmv:1m1-1 ontor
54 nfv wm
55 3 54 nfan wφm
56 nfv wv:1m1-1 ontor
57 55 56 nfan wφmv:1m1-1 ontor
58 eqid wrhA|tT0htht1twht<EmtTU1Em<ht=wrhA|tT0htht1twht<EmtTU1Em<ht
59 simplr φmv:1m1-1 ontorm
60 simpr φmv:1m1-1 ontorv:1m1-1 ontor
61 10 ad2antrr φmv:1m1-1 ontorE+
62 11 sselda φbBbT
63 notnot bB¬¬bB
64 63 intnand bB¬bT¬bB
65 64 adantl φbB¬bT¬bB
66 eldif bTBbT¬bB
67 65 66 sylnibr φbB¬bTB
68 4 eleq2i bUbTB
69 67 68 sylnibr φbB¬bU
70 62 69 eldifd φbBbTU
71 70 ralrimiva φbBbTU
72 dfss3 BTUbBbTU
73 71 72 sylibr φBTU
74 73 ad2antrr φmv:1m1-1 ontorBTU
75 12 ad2antrr φmv:1m1-1 ontorWV
76 13 ad2antrr φmv:1m1-1 ontorAV
77 23 ad2antrr φmv:1m1-1 ontorrFin
78 mptfi rFinwrhA|tT0htht1twht<EmtTU1Em<htFin
79 rnfi wrhA|tT0htht1twht<EmtTU1Em<htFinranwrhA|tT0htht1twht<EmtTU1Em<htFin
80 77 78 79 3syl φmv:1m1-1 ontorranwrhA|tT0htht1twht<EmtTU1Em<htFin
81 49 53 57 5 6 58 38 59 60 61 74 75 76 80 stoweidlem31 φmv:1m1-1 ontorxx:1mYi1mtvixit<EmtB1Em<xit
82 39 45 81 3jca φmv:1m1-1 ontorv:1mWDranvxx:1mYi1mtvixit<EmtB1Em<xit
83 82 ex φmv:1m1-1 ontorv:1mWDranvxx:1mYi1mtvixit<EmtB1Em<xit
84 83 eximdv φmvv:1m1-1 ontorvv:1mWDranvxx:1mYi1mtvixit<EmtB1Em<xit
85 84 reximdva φmvv:1m1-1 ontormvv:1mWDranvxx:1mYi1mtvixit<EmtB1Em<xit
86 32 85 mpd φmvv:1mWDranvxx:1mYi1mtvixit<EmtB1Em<xit