| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem43.1 |  | 
						
							| 2 |  | stoweidlem43.2 |  | 
						
							| 3 |  | stoweidlem43.3 |  | 
						
							| 4 |  | stoweidlem43.4 |  | 
						
							| 5 |  | stoweidlem43.5 |  | 
						
							| 6 |  | stoweidlem43.6 |  | 
						
							| 7 |  | stoweidlem43.7 |  | 
						
							| 8 |  | stoweidlem43.8 |  | 
						
							| 9 |  | stoweidlem43.9 |  | 
						
							| 10 |  | stoweidlem43.10 |  | 
						
							| 11 |  | stoweidlem43.11 |  | 
						
							| 12 |  | stoweidlem43.12 |  | 
						
							| 13 |  | stoweidlem43.13 |  | 
						
							| 14 |  | stoweidlem43.14 |  | 
						
							| 15 |  | stoweidlem43.15 |  | 
						
							| 16 |  | nfv |  | 
						
							| 17 | 15 | eldifad |  | 
						
							| 18 |  | elunii |  | 
						
							| 19 | 14 13 18 | syl2anc |  | 
						
							| 20 | 19 6 | eleqtrrdi |  | 
						
							| 21 | 15 | eldifbd |  | 
						
							| 22 |  | nelne2 |  | 
						
							| 23 | 14 21 22 | syl2anc |  | 
						
							| 24 | 23 | necomd |  | 
						
							| 25 | 17 20 24 | 3jca |  | 
						
							| 26 |  | simpr2 |  | 
						
							| 27 |  | nfv |  | 
						
							| 28 | 2 27 | nfan |  | 
						
							| 29 |  | nfv |  | 
						
							| 30 | 28 29 | nfim |  | 
						
							| 31 |  | eleq1 |  | 
						
							| 32 |  | neeq2 |  | 
						
							| 33 | 31 32 | 3anbi23d |  | 
						
							| 34 | 33 | anbi2d |  | 
						
							| 35 |  | fveq2 |  | 
						
							| 36 | 35 | neeq2d |  | 
						
							| 37 | 36 | rexbidv |  | 
						
							| 38 | 34 37 | imbi12d |  | 
						
							| 39 |  | simpr1 |  | 
						
							| 40 |  | eleq1 |  | 
						
							| 41 |  | neeq1 |  | 
						
							| 42 | 40 41 | 3anbi13d |  | 
						
							| 43 | 42 | anbi2d |  | 
						
							| 44 |  | fveq2 |  | 
						
							| 45 | 44 | neeq1d |  | 
						
							| 46 | 45 | rexbidv |  | 
						
							| 47 | 43 46 | imbi12d |  | 
						
							| 48 | 12 | a1i |  | 
						
							| 49 | 47 48 | vtoclga |  | 
						
							| 50 | 39 49 | mpcom |  | 
						
							| 51 | 30 38 50 | vtoclg1f |  | 
						
							| 52 | 26 51 | mpcom |  | 
						
							| 53 |  | df-rex |  | 
						
							| 54 | 52 53 | sylib |  | 
						
							| 55 | 25 54 | mpdan |  | 
						
							| 56 |  | nfv |  | 
						
							| 57 | 2 56 | nfan |  | 
						
							| 58 |  | nfcv |  | 
						
							| 59 |  | eqid |  | 
						
							| 60 |  | eqid |  | 
						
							| 61 | 8 | sselda |  | 
						
							| 62 | 4 6 60 61 | fcnre |  | 
						
							| 63 | 62 | adantlr |  | 
						
							| 64 | 9 | 3adant1r |  | 
						
							| 65 | 11 | adantlr |  | 
						
							| 66 | 17 | adantr |  | 
						
							| 67 | 20 | adantr |  | 
						
							| 68 |  | simprl |  | 
						
							| 69 |  | simprr |  | 
						
							| 70 | 57 58 59 63 64 65 66 67 68 69 | stoweidlem23 |  | 
						
							| 71 |  | eleq1 |  | 
						
							| 72 |  | fveq1 |  | 
						
							| 73 |  | fveq1 |  | 
						
							| 74 | 72 73 | neeq12d |  | 
						
							| 75 | 73 | eqeq1d |  | 
						
							| 76 | 71 74 75 | 3anbi123d |  | 
						
							| 77 | 76 | spcegv |  | 
						
							| 78 | 77 | 3ad2ant1 |  | 
						
							| 79 | 78 | pm2.43i |  | 
						
							| 80 | 70 79 | syl |  | 
						
							| 81 | 1 16 55 80 | exlimdd |  | 
						
							| 82 |  | nfmpt1 |  | 
						
							| 83 |  | nfcv |  | 
						
							| 84 |  | nfcv |  | 
						
							| 85 |  | nfv |  | 
						
							| 86 | 2 85 | nfan |  | 
						
							| 87 |  | fveq2 |  | 
						
							| 88 | 87 87 | oveq12d |  | 
						
							| 89 | 88 | cbvmptv |  | 
						
							| 90 |  | eqid |  | 
						
							| 91 |  | eqid |  | 
						
							| 92 | 7 | adantr |  | 
						
							| 93 | 8 | adantr |  | 
						
							| 94 |  | eleq1 |  | 
						
							| 95 | 94 | 3anbi2d |  | 
						
							| 96 |  | fveq1 |  | 
						
							| 97 | 96 | oveq1d |  | 
						
							| 98 | 97 | mpteq2dv |  | 
						
							| 99 | 98 | eleq1d |  | 
						
							| 100 | 95 99 | imbi12d |  | 
						
							| 101 | 100 10 | chvarvv |  | 
						
							| 102 | 101 | 3adant1r |  | 
						
							| 103 | 11 | adantlr |  | 
						
							| 104 | 17 | adantr |  | 
						
							| 105 | 20 | adantr |  | 
						
							| 106 |  | simpr1 |  | 
						
							| 107 |  | simpr2 |  | 
						
							| 108 |  | simpr3 |  | 
						
							| 109 | 3 82 83 84 86 4 5 6 89 90 91 92 93 102 103 104 105 106 107 108 | stoweidlem36 |  | 
						
							| 110 | 109 | ex |  | 
						
							| 111 | 110 | exlimdv |  | 
						
							| 112 | 81 111 | mpd |  |