Metamath Proof Explorer


Theorem tanord1

Description: The tangent function is strictly increasing on the nonnegative part of its principal domain. (Lemma for tanord .) (Contributed by Mario Carneiro, 29-Jul-2014) Revised to replace an OLD theorem. (Revised by Wolf Lammen, 20-Sep-2020)

Ref Expression
Assertion tanord1 A0π2B0π2A<BtanA<tanB

Proof

Step Hyp Ref Expression
1 tru
2 fveq2 x=ytanx=tany
3 fveq2 x=Atanx=tanA
4 fveq2 x=Btanx=tanB
5 0re 0
6 halfpire π2
7 6 rexri π2*
8 icossre 0π2*0π2
9 5 7 8 mp2an 0π2
10 9 sseli x0π2x
11 neghalfpirx π2*
12 pire π
13 2re 2
14 pipos 0<π
15 2pos 0<2
16 12 13 14 15 divgt0ii 0<π2
17 lt0neg2 π20<π2π2<0
18 6 17 ax-mp 0<π2π2<0
19 16 18 mpbi π2<0
20 df-ioo .=x*,y*z*|x<zz<y
21 df-ico .=x*,y*z*|xzz<y
22 xrltletr π2*0*w*π2<00wπ2<w
23 20 21 22 ixxss1 π2*π2<00π2π2π2
24 11 19 23 mp2an 0π2π2π2
25 24 sseli x0π2xπ2π2
26 cosq14gt0 xπ2π20<cosx
27 25 26 syl x0π20<cosx
28 27 gt0ne0d x0π2cosx0
29 10 28 retancld x0π2tanx
30 29 adantl x0π2tanx
31 10 resincld x0π2sinx
32 10 recoscld x0π2cosx
33 31 32 28 redivcld x0π2sinxcosx
34 33 3ad2ant1 x0π2y0π2x<ysinxcosx
35 9 sseli y0π2y
36 35 3ad2ant2 x0π2y0π2x<yy
37 36 resincld x0π2y0π2x<ysiny
38 32 3ad2ant1 x0π2y0π2x<ycosx
39 28 3ad2ant1 x0π2y0π2x<ycosx0
40 37 38 39 redivcld x0π2y0π2x<ysinycosx
41 36 recoscld x0π2y0π2x<ycosy
42 24 sseli y0π2yπ2π2
43 cosq14gt0 yπ2π20<cosy
44 42 43 syl y0π20<cosy
45 44 gt0ne0d y0π2cosy0
46 45 3ad2ant2 x0π2y0π2x<ycosy0
47 37 41 46 redivcld x0π2y0π2x<ysinycosy
48 ioossicc π2π2π2π2
49 24 48 sstri 0π2π2π2
50 49 sseli x0π2xπ2π2
51 49 sseli y0π2yπ2π2
52 sinord xπ2π2yπ2π2x<ysinx<siny
53 50 51 52 syl2an x0π2y0π2x<ysinx<siny
54 53 biimp3a x0π2y0π2x<ysinx<siny
55 10 3ad2ant1 x0π2y0π2x<yx
56 55 resincld x0π2y0π2x<ysinx
57 27 3ad2ant1 x0π2y0π2x<y0<cosx
58 ltdiv1 sinxsinycosx0<cosxsinx<sinysinxcosx<sinycosx
59 56 37 38 57 58 syl112anc x0π2y0π2x<ysinx<sinysinxcosx<sinycosx
60 54 59 mpbid x0π2y0π2x<ysinxcosx<sinycosx
61 12 rexri π*
62 pirp π+
63 rphalflt π+π2<π
64 62 63 ax-mp π2<π
65 df-icc .=x*,y*z*|xzzy
66 xrlttr w*π2*π*w<π2π2<πw<π
67 xrltle w*π*w<πwπ
68 67 3adant2 w*π2*π*w<πwπ
69 66 68 syld w*π2*π*w<π2π2<πwπ
70 65 21 69 ixxss2 π*π2<π0π20π
71 61 64 70 mp2an 0π20π
72 71 sseli x0π2x0π
73 71 sseli y0π2y0π
74 cosord x0πy0πx<ycosy<cosx
75 72 73 74 syl2an x0π2y0π2x<ycosy<cosx
76 75 biimp3a x0π2y0π2x<ycosy<cosx
77 0red x0π2y0π2x<y0
78 simp1 x0π2y0π2x<yx0π2
79 elico2 0π2*x0π2x0xx<π2
80 5 7 79 mp2an x0π2x0xx<π2
81 78 80 sylib x0π2y0π2x<yx0xx<π2
82 81 simp2d x0π2y0π2x<y0x
83 simp3 x0π2y0π2x<yx<y
84 77 55 36 82 83 lelttrd x0π2y0π2x<y0<y
85 simp2 x0π2y0π2x<yy0π2
86 elico2 0π2*y0π2y0yy<π2
87 5 7 86 mp2an y0π2y0yy<π2
88 85 87 sylib x0π2y0π2x<yy0yy<π2
89 88 simp3d x0π2y0π2x<yy<π2
90 0xr 0*
91 elioo2 0*π2*y0π2y0<yy<π2
92 90 7 91 mp2an y0π2y0<yy<π2
93 36 84 89 92 syl3anbrc x0π2y0π2x<yy0π2
94 sincosq1sgn y0π20<siny0<cosy
95 93 94 syl x0π2y0π2x<y0<siny0<cosy
96 95 simprd x0π2y0π2x<y0<cosy
97 95 simpld x0π2y0π2x<y0<siny
98 ltdiv2 cosy0<cosycosx0<cosxsiny0<sinycosy<cosxsinycosx<sinycosy
99 41 96 38 57 37 97 98 syl222anc x0π2y0π2x<ycosy<cosxsinycosx<sinycosy
100 76 99 mpbid x0π2y0π2x<ysinycosx<sinycosy
101 34 40 47 60 100 lttrd x0π2y0π2x<ysinxcosx<sinycosy
102 10 recnd x0π2x
103 tanval xcosx0tanx=sinxcosx
104 102 28 103 syl2anc x0π2tanx=sinxcosx
105 104 3ad2ant1 x0π2y0π2x<ytanx=sinxcosx
106 35 recnd y0π2y
107 106 3ad2ant2 x0π2y0π2x<yy
108 tanval ycosy0tany=sinycosy
109 107 46 108 syl2anc x0π2y0π2x<ytany=sinycosy
110 101 105 109 3brtr4d x0π2y0π2x<ytanx<tany
111 110 3expia x0π2y0π2x<ytanx<tany
112 111 adantl x0π2y0π2x<ytanx<tany
113 2 3 4 9 30 112 ltord1 A0π2B0π2A<BtanA<tanB
114 1 113 mpan A0π2B0π2A<BtanA<tanB