Metamath Proof Explorer


Theorem tgoldbach

Description: The ternary Goldbach conjecture is valid. Main theorem in Helfgott p. 2. This follows from tgoldbachlt and ax-tgoldbachgt . (Contributed by AV, 2-Aug-2020) (Revised by AV, 9-Sep-2021)

Ref Expression
Assertion tgoldbach nOdd7<nnGoldbachOdd

Proof

Step Hyp Ref Expression
1 oddz nOddn
2 1 zred nOddn
3 10re 10
4 2nn0 20
5 7nn 7
6 4 5 decnncl 27
7 6 nnnn0i 270
8 reexpcl 102701027
9 3 7 8 mp2an 1027
10 lelttric n1027n10271027<n
11 2 9 10 sylancl nOddn10271027<n
12 tgoldbachlt m81030<moOdd7<oo<moGoldbachOdd
13 breq2 o=n7<o7<n
14 breq1 o=no<mn<m
15 13 14 anbi12d o=n7<oo<m7<nn<m
16 eleq1w o=noGoldbachOddnGoldbachOdd
17 15 16 imbi12d o=n7<oo<moGoldbachOdd7<nn<mnGoldbachOdd
18 17 rspcv nOddoOdd7<oo<moGoldbachOdd7<nn<mnGoldbachOdd
19 9 recni 1027
20 19 mullidi 11027=1027
21 1re 1
22 8re 8
23 21 22 pm3.2i 18
24 23 a1i nOddm18
25 0le1 01
26 1lt8 1<8
27 25 26 pm3.2i 011<8
28 27 a1i nOddm011<8
29 3nn 3
30 29 decnncl2 30
31 30 nnnn0i 300
32 reexpcl 103001030
33 3 31 32 mp2an 1030
34 9 33 pm3.2i 10271030
35 34 a1i nOddm10271030
36 10nn0 100
37 36 7 nn0expcli 10270
38 37 nn0ge0i 01027
39 6 nnzi 27
40 30 nnzi 30
41 3 39 40 3pm3.2i 102730
42 1lt10 1<10
43 3nn0 30
44 7nn0 70
45 0nn0 00
46 7lt10 7<10
47 2lt3 2<3
48 4 43 44 45 46 47 decltc 27<30
49 42 48 pm3.2i 1<1027<30
50 ltexp2a 1027301<1027<301027<1030
51 41 49 50 mp2an 1027<1030
52 38 51 pm3.2i 010271027<1030
53 52 a1i nOddm010271027<1030
54 ltmul12a 18011<810271030010271027<103011027<81030
55 24 28 35 53 54 syl22anc nOddm11027<81030
56 20 55 eqbrtrrid nOddm1027<81030
57 9 a1i nOddm1027
58 22 33 remulcli 81030
59 58 a1i nOddm81030
60 nnre mm
61 60 adantl nOddmm
62 lttr 102781030m1027<8103081030<m1027<m
63 57 59 61 62 syl3anc nOddm1027<8103081030<m1027<m
64 56 63 mpand nOddm81030<m1027<m
65 64 imp nOddm81030<m1027<m
66 2 adantr nOddmn
67 66 57 61 3jca nOddmn1027m
68 67 adantr nOddm81030<mn1027m
69 lelttr n1027mn10271027<mn<m
70 68 69 syl nOddm81030<mn10271027<mn<m
71 65 70 mpan2d nOddm81030<mn1027n<m
72 71 imp nOddm81030<mn1027n<m
73 72 anim1i nOddm81030<mn10277<nn<m7<n
74 73 ancomd nOddm81030<mn10277<n7<nn<m
75 pm2.27 7<nn<m7<nn<mnGoldbachOddnGoldbachOdd
76 74 75 syl nOddm81030<mn10277<n7<nn<mnGoldbachOddnGoldbachOdd
77 76 ex nOddm81030<mn10277<n7<nn<mnGoldbachOddnGoldbachOdd
78 77 com23 nOddm81030<mn10277<nn<mnGoldbachOdd7<nnGoldbachOdd
79 78 exp41 nOddm81030<mn10277<nn<mnGoldbachOdd7<nnGoldbachOdd
80 79 com25 nOdd7<nn<mnGoldbachOdd81030<mn1027m7<nnGoldbachOdd
81 18 80 syld nOddoOdd7<oo<moGoldbachOdd81030<mn1027m7<nnGoldbachOdd
82 81 com15 moOdd7<oo<moGoldbachOdd81030<mn1027nOdd7<nnGoldbachOdd
83 82 com23 m81030<moOdd7<oo<moGoldbachOddn1027nOdd7<nnGoldbachOdd
84 83 imp32 m81030<moOdd7<oo<moGoldbachOddn1027nOdd7<nnGoldbachOdd
85 84 rexlimiva m81030<moOdd7<oo<moGoldbachOddn1027nOdd7<nnGoldbachOdd
86 12 85 ax-mp n1027nOdd7<nnGoldbachOdd
87 tgoldbachgtALTV mm1027oOddm<ooGoldbachOdd
88 breq2 o=nm<om<n
89 88 16 imbi12d o=nm<ooGoldbachOddm<nnGoldbachOdd
90 89 rspcv nOddoOddm<ooGoldbachOddm<nnGoldbachOdd
91 lelttr m1027nm10271027<nm<n
92 61 57 66 91 syl3anc nOddmm10271027<nm<n
93 92 expcomd nOddm1027<nm1027m<n
94 93 ex nOddm1027<nm1027m<n
95 94 com23 nOdd1027<nmm1027m<n
96 95 imp43 nOdd1027<nmm1027m<n
97 pm2.27 m<nm<nnGoldbachOddnGoldbachOdd
98 96 97 syl nOdd1027<nmm1027m<nnGoldbachOddnGoldbachOdd
99 98 a1dd nOdd1027<nmm1027m<nnGoldbachOdd7<nnGoldbachOdd
100 99 ex nOdd1027<nmm1027m<nnGoldbachOdd7<nnGoldbachOdd
101 100 com23 nOdd1027<nm<nnGoldbachOddmm10277<nnGoldbachOdd
102 101 ex nOdd1027<nm<nnGoldbachOddmm10277<nnGoldbachOdd
103 102 com23 nOddm<nnGoldbachOdd1027<nmm10277<nnGoldbachOdd
104 90 103 syld nOddoOddm<ooGoldbachOdd1027<nmm10277<nnGoldbachOdd
105 104 com14 mm1027oOddm<ooGoldbachOdd1027<nnOdd7<nnGoldbachOdd
106 105 impr mm1027oOddm<ooGoldbachOdd1027<nnOdd7<nnGoldbachOdd
107 106 rexlimiva mm1027oOddm<ooGoldbachOdd1027<nnOdd7<nnGoldbachOdd
108 87 107 ax-mp 1027<nnOdd7<nnGoldbachOdd
109 86 108 jaoi n10271027<nnOdd7<nnGoldbachOdd
110 11 109 mpcom nOdd7<nnGoldbachOdd
111 110 rgen nOdd7<nnGoldbachOdd