| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgqioo.1 |
|
| 2 |
|
imassrn |
|
| 3 |
|
ioof |
|
| 4 |
|
ffn |
|
| 5 |
3 4
|
ax-mp |
|
| 6 |
|
simpll |
|
| 7 |
|
elioo1 |
|
| 8 |
7
|
biimpa |
|
| 9 |
8
|
simp1d |
|
| 10 |
8
|
simp2d |
|
| 11 |
|
qbtwnxr |
|
| 12 |
6 9 10 11
|
syl3anc |
|
| 13 |
|
simplr |
|
| 14 |
8
|
simp3d |
|
| 15 |
|
qbtwnxr |
|
| 16 |
9 13 14 15
|
syl3anc |
|
| 17 |
|
reeanv |
|
| 18 |
|
df-ov |
|
| 19 |
|
opelxpi |
|
| 20 |
19
|
3ad2ant2 |
|
| 21 |
|
ffun |
|
| 22 |
3 21
|
ax-mp |
|
| 23 |
|
qssre |
|
| 24 |
|
ressxr |
|
| 25 |
23 24
|
sstri |
|
| 26 |
|
xpss12 |
|
| 27 |
25 25 26
|
mp2an |
|
| 28 |
3
|
fdmi |
|
| 29 |
27 28
|
sseqtrri |
|
| 30 |
|
funfvima2 |
|
| 31 |
22 29 30
|
mp2an |
|
| 32 |
20 31
|
syl |
|
| 33 |
18 32
|
eqeltrid |
|
| 34 |
9
|
3ad2ant1 |
|
| 35 |
|
simp3lr |
|
| 36 |
|
simp3rl |
|
| 37 |
|
simp2l |
|
| 38 |
25 37
|
sselid |
|
| 39 |
|
simp2r |
|
| 40 |
25 39
|
sselid |
|
| 41 |
|
elioo1 |
|
| 42 |
38 40 41
|
syl2anc |
|
| 43 |
34 35 36 42
|
mpbir3and |
|
| 44 |
6
|
3ad2ant1 |
|
| 45 |
|
simp3ll |
|
| 46 |
44 38 45
|
xrltled |
|
| 47 |
|
iooss1 |
|
| 48 |
44 46 47
|
syl2anc |
|
| 49 |
13
|
3ad2ant1 |
|
| 50 |
|
simp3rr |
|
| 51 |
40 49 50
|
xrltled |
|
| 52 |
|
iooss2 |
|
| 53 |
49 51 52
|
syl2anc |
|
| 54 |
48 53
|
sstrd |
|
| 55 |
|
eleq2 |
|
| 56 |
|
sseq1 |
|
| 57 |
55 56
|
anbi12d |
|
| 58 |
57
|
rspcev |
|
| 59 |
33 43 54 58
|
syl12anc |
|
| 60 |
59
|
3exp |
|
| 61 |
60
|
rexlimdvv |
|
| 62 |
17 61
|
biimtrrid |
|
| 63 |
12 16 62
|
mp2and |
|
| 64 |
63
|
ralrimiva |
|
| 65 |
|
qtopbas |
|
| 66 |
|
eltg2b |
|
| 67 |
65 66
|
ax-mp |
|
| 68 |
64 67
|
sylibr |
|
| 69 |
68
|
rgen2 |
|
| 70 |
|
ffnov |
|
| 71 |
5 69 70
|
mpbir2an |
|
| 72 |
|
frn |
|
| 73 |
71 72
|
ax-mp |
|
| 74 |
|
2basgen |
|
| 75 |
2 73 74
|
mp2an |
|
| 76 |
1 75
|
eqtr2i |
|