Metamath Proof Explorer


Theorem tgqioo

Description: The topology generated by open intervals of reals with rational endpoints is the same as the open sets of the standard metric space on the reals. In particular, this proves that the standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Hypothesis tgqioo.1 Q=topGen.×
Assertion tgqioo topGenran.=Q

Proof

Step Hyp Ref Expression
1 tgqioo.1 Q=topGen.×
2 imassrn .×ran.
3 ioof .:*×*𝒫
4 ffn .:*×*𝒫.Fn*×*
5 3 4 ax-mp .Fn*×*
6 simpll x*y*zxyx*
7 elioo1 x*y*zxyz*x<zz<y
8 7 biimpa x*y*zxyz*x<zz<y
9 8 simp1d x*y*zxyz*
10 8 simp2d x*y*zxyx<z
11 qbtwnxr x*z*x<zux<uu<z
12 6 9 10 11 syl3anc x*y*zxyux<uu<z
13 simplr x*y*zxyy*
14 8 simp3d x*y*zxyz<y
15 qbtwnxr z*y*z<yvz<vv<y
16 9 13 14 15 syl3anc x*y*zxyvz<vv<y
17 reeanv uvx<uu<zz<vv<yux<uu<zvz<vv<y
18 df-ov uv=.uv
19 opelxpi uvuv×
20 19 3ad2ant2 x*y*zxyuvx<uu<zz<vv<yuv×
21 ffun .:*×*𝒫Fun.
22 3 21 ax-mp Fun.
23 qssre
24 ressxr *
25 23 24 sstri *
26 xpss12 **×*×*
27 25 25 26 mp2an ×*×*
28 3 fdmi dom.=*×*
29 27 28 sseqtrri ×dom.
30 funfvima2 Fun.×dom.uv×.uv.×
31 22 29 30 mp2an uv×.uv.×
32 20 31 syl x*y*zxyuvx<uu<zz<vv<y.uv.×
33 18 32 eqeltrid x*y*zxyuvx<uu<zz<vv<yuv.×
34 9 3ad2ant1 x*y*zxyuvx<uu<zz<vv<yz*
35 simp3lr x*y*zxyuvx<uu<zz<vv<yu<z
36 simp3rl x*y*zxyuvx<uu<zz<vv<yz<v
37 simp2l x*y*zxyuvx<uu<zz<vv<yu
38 25 37 sselid x*y*zxyuvx<uu<zz<vv<yu*
39 simp2r x*y*zxyuvx<uu<zz<vv<yv
40 25 39 sselid x*y*zxyuvx<uu<zz<vv<yv*
41 elioo1 u*v*zuvz*u<zz<v
42 38 40 41 syl2anc x*y*zxyuvx<uu<zz<vv<yzuvz*u<zz<v
43 34 35 36 42 mpbir3and x*y*zxyuvx<uu<zz<vv<yzuv
44 6 3ad2ant1 x*y*zxyuvx<uu<zz<vv<yx*
45 simp3ll x*y*zxyuvx<uu<zz<vv<yx<u
46 44 38 45 xrltled x*y*zxyuvx<uu<zz<vv<yxu
47 iooss1 x*xuuvxv
48 44 46 47 syl2anc x*y*zxyuvx<uu<zz<vv<yuvxv
49 13 3ad2ant1 x*y*zxyuvx<uu<zz<vv<yy*
50 simp3rr x*y*zxyuvx<uu<zz<vv<yv<y
51 40 49 50 xrltled x*y*zxyuvx<uu<zz<vv<yvy
52 iooss2 y*vyxvxy
53 49 51 52 syl2anc x*y*zxyuvx<uu<zz<vv<yxvxy
54 48 53 sstrd x*y*zxyuvx<uu<zz<vv<yuvxy
55 eleq2 w=uvzwzuv
56 sseq1 w=uvwxyuvxy
57 55 56 anbi12d w=uvzwwxyzuvuvxy
58 57 rspcev uv.×zuvuvxyw.×zwwxy
59 33 43 54 58 syl12anc x*y*zxyuvx<uu<zz<vv<yw.×zwwxy
60 59 3exp x*y*zxyuvx<uu<zz<vv<yw.×zwwxy
61 60 rexlimdvv x*y*zxyuvx<uu<zz<vv<yw.×zwwxy
62 17 61 biimtrrid x*y*zxyux<uu<zvz<vv<yw.×zwwxy
63 12 16 62 mp2and x*y*zxyw.×zwwxy
64 63 ralrimiva x*y*zxyw.×zwwxy
65 qtopbas .×TopBases
66 eltg2b .×TopBasesxytopGen.×zxyw.×zwwxy
67 65 66 ax-mp xytopGen.×zxyw.×zwwxy
68 64 67 sylibr x*y*xytopGen.×
69 68 rgen2 x*y*xytopGen.×
70 ffnov .:*×*topGen.×.Fn*×*x*y*xytopGen.×
71 5 69 70 mpbir2an .:*×*topGen.×
72 frn .:*×*topGen.×ran.topGen.×
73 71 72 ax-mp ran.topGen.×
74 2basgen .×ran.ran.topGen.×topGen.×=topGenran.
75 2 73 74 mp2an topGen.×=topGenran.
76 1 75 eqtr2i topGenran.=Q